Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 341, n° 6
pages 393-398 (septembre 2005)
Doi : 10.1016/j.crma.2005.06.034
Received : 12 May 2005 ;  accepted : 28 June 2005
Contacts et auto-contacts sans frottement
Frictionless contact and self-contact

Olivier Pantz
Centre de mathématiques appliquées, École polytechnique, 91128 Palaiseau cedex, France 


Soit M une sous-variété de   ( ) considérée comme configuration de référence dʼun solide hyperélastique. Une contrainte topologique est imposée aux déformations admissibles   du solide afin de satisfaire une condition de non interpénétration. Nous montrons que le problème de minimisation associé possède au moins une solution. A lʼexception du cas particulier des solides bidimensionnels évoluant dans lʼespace  , ce problème de minimisation est un modèle mathématique de solide pouvant réaliser des auto-contacts sans frottement. Une application numérique est présentée. Pour citer cet article : O. Pantz, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

Let M be a submanifold of   ( ) considered as the reference configuration of a hyperelastic solid. A topological constraint is imposed on the admissible deformations   of the solid in order to satisfy a non penetration condition. We show that the associated minimization problem has at least one solution and, in the case   or  , provides a mathematical model of body that allows frictionless self-contact. A numerical application is presented. To cite this article: O. Pantz, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline