Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 33,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 341, n° 1
pages 29-34 (juillet 2005)
Doi : 10.1016/j.crma.2005.06.002
Received : 24 May 2005 ;  accepted : 28 May 2005
Quasi-morphisme de Calabi sur les surfaces de genre supérieur
Calabi quasi-morphism on higher genus surfaces

Pierre Py
Unité de mathématiques pures et appliquées, École normale supérieure de Lyon, UMR 5669 CNRS, 46, allée dʼItalie, 69364 Lyon cedex 07, France 


Nous construisons un quasi-morphisme homogène   sur le groupe des difféomorphismes hamiltoniens dʼune surface (fermée, connexe, orientée) de genre supérieur ou égal à 2, ayant la propriété suivante. Si U est un ouvert connexe de S difféomorphe à un disque ou à un anneau, la restriction de   au sous-groupe formé des difféomorphismes qui sont le temps 1 dʼune isotopie hamiltonienne dans U , est égale au morphisme de Calabi. Pour citer cet article : P. Py, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

We construct a homogeneous quasi-morphism   on the group of Hamiltonian diffeomorphisms of a (closed, connected, oriented) surface S of genus greater or equal to 2, with the following property. For each connected open set U in S diffeomorphic to a disk or to an annulus, the restriction of   to the subgroup of diffeomorphisms which are the time 1 map of a Hamiltonian isotopy in U , equals Calabiʼs homomorphism. To cite this article: P. Py, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.

© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline