Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0


Comptes Rendus Mathématique
Volume 341, n° 1
pages 35-38 (juillet 2005)
Doi : 10.1016/j.crma.2005.05.027
Received : 12 Mars 2005 ;  accepted : 22 May 2005
4-variétés parallélisables sans structure complexe dont lʼespace twistoriel est complexe
Parallelizable 4-manifolds without complex structure whose twistor space is complex
 

Guillaume Deschamps
UFR de mathématiques, université Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France 

Résumé

Le but de cette Note est de donner quelques applications de la théorie des espaces twistoriels à lʼexistence ou lʼinexistence de structures complexes. Ainsi, on précise le résultat de Yau [Topology 15 (1976) 51-53] en donnant la liste complète des 4-variétés réelles compactes parallélisables munies dʼune structure complexe. À lʼinverse, on explicite une famille de 4-variétés parallélisables sans structure complexe, mais dont le produit avec la sphère   est complexe. Pour citer cet article : G. Deschamps, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.
Abstract

The aim of this Note is to give some applications of twistor theory about existence or non-existence of complex structures. We slightly improve Yauʼs result [Topology 15 (1976) 51-53] by giving the full list of compact parallelizable real 4-manifolds with a complex structure. On the other hand, we give a family of parallelizable 4-manifolds without complex structure but whose product with the sphere   is complex. To cite this article: G. Deschamps, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.


© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@