Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0


Comptes Rendus Mathématique
Volume 341, n° 1
pages 59-62 (juillet 2005)
Doi : 10.1016/j.crma.2005.05.003
Received : 30 January 2005 ;  accepted : 13 May 2005
Vitesses optimale et suroptimale des polygones de fréquences pour les processus à temps continu
Optimal and superoptimal rates of frequency polygons for continuous-time processes
 

François-Xavier Lejeune
LSTA, université Paris 6, 175, rue du Chevaleret, 75013 Paris, France 

Résumé

Cette Note porte sur les vitesses de convergence dʼun estimateur non-paramétrique de la densité dʼun processus à temps continu. Plus précisément, sous certaines hypothèses de régularité et dʼindépendance asymptotique, lʼerreur quadratique intégrée du polygone de fréquences converge vers zéro à la vitesse optimale   du cas i.i.d. Avec une condition locale plus faible que celle de Castellana-Leadbetter [Stochastic Process. Appl. 21 (1986) 179-193], la vitesse « suroptimale »   est obtenue. Pour citer cet article : F.-X. Lejeune, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.
Abstract

This Note deals with density estimation in continuous-time. Then under mild regularity and asymptotic independence conditions, the mean integrated square error achieves the same optimal rate   of convergence to zero as in the i.i.d. case. Under a local assumption weaker than Castellana-Leadbetterʼs [Stochastic Process. Appl. 21 (1986) 179-193], we obtain the parametric rate  . To cite this article: F.-X. Lejeune, C. R. Acad. Sci. Paris, Ser. I 341 (2005).

The full text of this article is available in PDF format.


© 2005  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@