Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 339, n° 10
pages 699-704 (novembre 2004)
Doi : 10.1016/j.crma.2004.09.020
Received : 5 June 2004 ;  accepted : 14 June 2004
Existence et propriétés qualitatives de fronts coniques bistables en dimension 2 dʼespace
Existence and qualitative properties of bistable conical fronts in two space dimensions.

François Hamel a , Régis Monneau b , Jean-Michel Roquejoffre c
a UMR CNRS 6632 (LATP), université Aix-Marseille III, avenue Escadrille-Normandie-Niemen, 13397 Marseille cedex 20, France 
b CERMICS-ENPC, 6-8, avenue B. Pascal, cité Descartes, 77455 Marne-La-Vallée cedex 2, France 
c UMR CNRS 5640 (MIP) et IUF, université Paul Sabatier, 118, route de Narbone, 31062 Toulouse cedex 4, France 


On donne dans cette note des résultats dʼexistence dʼondes progressives à lignes de niveaux coniques pour une équation de réaction-diffusion à non-linéarité bistable. Les solutions trouvées ici ont une vitesse plus grande que lʼonde monodimensionnelle. Leurs lignes de niveaux sont asymptotes à des droites, dont lʼangle avec la verticale se calcule en fonction de la vitesse des ondes. Des propriétés qualitatives : monotonie, symétrie, convergence exponentielle des pentes des lignes de niveau, sont discutées. Pour citer cet article : F. Hamel et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).

The full text of this article is available in PDF format.

Conical-shaped travelling wave solutions of a bistable reaction-diffusion equations posed in the plane are shown to exist. The velocity of the wave solutions is strictly larger than the planar wave velocity, and their level sets are asymptotic to lines whose angle is computed in terms of their velocity. Qualitative properties, such as monotonicity, symmetry, and exponential convergence of the slopes of the level lines, are given. To cite this article: F. Hamel et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).

The full text of this article is available in PDF format.

© 2004  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline