S'abonner

Dispersion and Strichartz estimates for the Liouville equation - 15/02/08

Doi : 10.1016/j.crma.2006.02.015 
Delphine Salort
Université Paris 6, laboratoire Jacques-Louis Lions, UMR 7598, 175, rue du Chevaleret 75013 Paris, France 

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

pages 4
Iconographies 0
Vidéos 0
Autres 0

Abstract

We consider the Liouville equation associated to a metric g and we prove dispersion and Strichartz estimates for the solution of this equation in terms of the geometry of the trajectories associated to g. In particular, we obtain global Strichartz estimates in time for metrics where dispersion estimate is false even locally in time. We also study the analogy between Strichartz estimates obtained for the Liouville equation and the Schrödinger equation with variable coefficients. To cite this article: D. Salort, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

Le texte complet de cet article est disponible en PDF.

Résumé

On considère lʼéquation de Liouville associée à une métrique g et on prouve des estimations de dispersion et de Strichartz pour la solution de cette équation en fonction de la géométrie des trajectoires associée à g. En particulier, on obtient des estimations de Strichartz globales en temps pour des métriques où lʼestimation de dispersion est fausse même pour des temps arbitrairement petits. Cette étude permet de mettre en évidence une analogie entre le comportement de la solution de lʼéquation de Schrödinger et de lʼéquation de Liouville. Pour citer cet article : D. Salort, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

Le texte complet de cet article est disponible en PDF.

Plan

Plan indisponible

© 2006  Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Ajouter à ma bibliothèque Retirer de ma bibliothèque Imprimer
Export

    Export citations

  • Fichier

  • Contenu

Vol 342 - N° 7

P. 489-492 - avril 2006 Retour au numéro
Article précédent Article précédent
  • Symétrie des grandes solutions déquations elliptiques semi linéaires
  • Alessio Porretta, Laurent Véron
| Article suivant Article suivant
  • Sur le groupe affine dun corps local
  • Wassim Nasserddine

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’accès au texte intégral de cet article nécessite un abonnement.

Bienvenue sur EM-consulte, la référence des professionnels de santé.
L’achat d’article à l’unité est indisponible à l’heure actuelle.

Déjà abonné à cette revue ?

Mon compte


Plateformes Elsevier Masson

Déclaration CNIL

EM-CONSULTE.COM est déclaré à la CNIL, déclaration n° 1286925.

En application de la loi nº78-17 du 6 janvier 1978 relative à l'informatique, aux fichiers et aux libertés, vous disposez des droits d'opposition (art.26 de la loi), d'accès (art.34 à 38 de la loi), et de rectification (art.36 de la loi) des données vous concernant. Ainsi, vous pouvez exiger que soient rectifiées, complétées, clarifiées, mises à jour ou effacées les informations vous concernant qui sont inexactes, incomplètes, équivoques, périmées ou dont la collecte ou l'utilisation ou la conservation est interdite.
Les informations personnelles concernant les visiteurs de notre site, y compris leur identité, sont confidentielles.
Le responsable du site s'engage sur l'honneur à respecter les conditions légales de confidentialité applicables en France et à ne pas divulguer ces informations à des tiers.


Tout le contenu de ce site: Copyright © 2024 Elsevier, ses concédants de licence et ses contributeurs. Tout les droits sont réservés, y compris ceux relatifs à l'exploration de textes et de données, a la formation en IA et aux technologies similaires. Pour tout contenu en libre accès, les conditions de licence Creative Commons s'appliquent.