Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 342, n° 11
pages 859-864 (juin 2006)
Doi : 10.1016/j.crma.2006.04.010
accepted : 30 Mars 2006
A direct method for the stabilization of some locally damped semilinear wave equations
Une méthode directe pour la stabilisation de quelques équations des ondes semi-linéaires localement amorties

Louis Tcheugoué Tébou
Department of Mathematics, Florida International University, Miami, FL 33199, USA 


First, we consider a semilinear wave equation with a locally distributed damping in a bounded domain. Using the Carleman estimate, we devise an elementary proof of the exponential decay of the energy of this system. Afterwards we apply the same technique to the stabilization of the same type of equation in the whole space. Our proofs are constructive, and much simpler than those found in the literature. To cite this article: L. Tcheugoué Tébou, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

The full text of this article is available in PDF format.

Dans un premier temps, nous considérons une équation des ondes semi-linéaire avec un amortissement localement distribué dans un domaine borné. A lʼaide de lʼinégalité de Carleman, nous construisons une preuve élémentaire et directe de la décroissance exponentielle de lʼénergie de ce système. Par la suite, nous appliquons la même technique pour étudier la stabilisation du même type dʼéquation dans lʼespace tout entier. Nos démontrations sont constructives, et beaucoup plus simples que celles existantes. Pour citer cet article : L. Tcheugoué Tébou, C. R. Acad. Sci. Paris, Ser. I 342 (2006).

The full text of this article is available in PDF format.

© 2006  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline