Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 343, n° 3
pages 185-190 (août 2006)
Doi : 10.1016/j.crma.2006.05.015
Received : 13 December 2005 ;  accepted : 15 May 2006
Uniform asymptotic formulae for Greenʼs kernels in regularly and singularly perturbed domains
Formules asymptotiques uniformes pour des noyaux de Green dans des domaines avec perturbations regulières et singulières

Vladimir Mazʼya a, b, c , Alexander Movchan a
a Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK 
b Department of Mathematics, Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA 
c Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden 


Asymptotic formulae for Greenʼs kernels   of various boundary value problems for the Laplace operator are obtained in regularly perturbed domains and certain domains with small singular perturbations of the boundary, as  . The main new feature of these asymptotic formulae is their uniformity with respect to the independent variables x and y. To cite this article: V. Mazʼya, A. Movchan, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

The full text of this article is available in PDF format.

Des formules asymptotiques sont obtenues pour des noyaux de Green   de divers problèmes aux limites pour lʼopérateur de Laplace dans des domaines régulièrement perturbés et certains domaines avec des petites perturbations singulières du bord, quand  . Le caractère novateur de ces formules asymptotiques réside dans leur uniformité par rapport aux variables indépendantes x et y. Pour citer cet article : V. Mazʼya, A. Movchan, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

The full text of this article is available in PDF format.

© 2006  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline