Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 343, n° 1
pages 15-18 (juillet 2006)
Doi : 10.1016/j.crma.2006.05.009
Received : 4 May 2006 ;  accepted : 15 May 2006
A construction of semisimple tensor categories
Une construction des catégories tensorielles semi-simples

Friedrich Knop
Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA 


Let   be an Abelian category such that every object has only finitely many subobjects. From   we construct a semisimple tensor category  . We show that   interpolates the categories   where p runs through certain projective pro-objects of  . This extends a construction of Deligne for symmetric groups. To cite this article: F. Knop, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

The full text of this article is available in PDF format.

Soit   une catégorie abélienne dont chaque objet nʼa quʼun nombre fini de sous-objets. A partir de   on construit une catégorie tensorielle semi-simple  . On démontre que   interpole les catégories   où p parcourt certains pro-objets projectifs de  . Ceci étend une construction de Deligne pour les groupes symétriques. Pour citer cet article : F. Knop, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

The full text of this article is available in PDF format.

© 2006  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline