Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    3 0 0 0

Comptes Rendus Mathématique
Volume 343, n° 1
pages 37-39 (juillet 2006)
Doi : 10.1016/j.crma.2006.04.014
Received : 23 February 2006 ;  accepted : 18 April 2006
On the irreducibility of Deligne-Lusztig varieties
Sur lʼirréductibilité des variétés de Deligne-Lusztig

Cédric Bonnafé a , Raphaël Rouquier b, 1
a Laboratoire de mathématiques de Besançon (CNRS-UMR 6623), université de Franche-Comté, 16, route de Gray, 25030 Besançon cedex, France 
b Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK 


Let G be a connected reductive algebraic group defined over an algebraic closure of a finite field and let   be an endomorphism such that   is a Frobenius endomorphism for some  . Let P be a parabolic subgroup of G. We prove that the Deligne-Lusztig variety   is irreducible if and only if P is not contained in a proper F -stable parabolic subgroup of G. To cite this article: C. Bonnafé, R. Rouquier, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

The full text of this article is available in PDF format.

Soit G un groupe réductif connexe défini sur une clôture algébrique dʼun corps fini et soit   un endomorphisme dont une puissance est un endomorphisme de Frobenius. Soit P un sous-groupe parabolique de G. Nous montrons que la variété de Deligne-Lusztig   est irréductible si et seulement si P nʼest pas contenu dans un sous-groupe parabolique F -stable propre de G. Pour citer cet article : C. Bonnafé, R. Rouquier, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

The full text of this article is available in PDF format.
1  Previous address: Équipe des groupes finis (CNRS-UMR 7586), université Paris 7, UFR de mathématiques, 175, rue du Chevaleret, 75013 Paris, France.

© 2006  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline