Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 344, n° 8
pages 541-544 (avril 2007)
Doi : 10.1016/j.crma.2007.03.013
Received : 9 December 2005 ;  accepted : 14 Mars 2007
Derivation of a plate theory for incompressible materials
Dérivation de la théorie non-linéaire des plaques avec la contrainte de lʼincompressibilité

Sergio Conti a , Georg Dolzmann b
a Fachbereich Mathematik, Universität Duisburg-Essen, Lotharstr. 65, 47057 Duisburg, Germany 
b NWF I - Mathematik, Universität Regensburg, 93040 Regensburg, Germany 


We derive a two-dimensional model for elastic plates as a Γ -limit of three-dimensional nonlinear elasticity with the constraint of incompressibility. The energy density of the reduced problem describes plate bending, and is determined from the elastic moduli at the identity of the energy density of the three-dimensional problem. Without the constraint of incompressibility, Γ -convergence to a plate theory was first derived by Friesecke, James and Müller. The main difficulty in the present result is the construction of a recovery sequence which satisfies pointwise the nonlinear constraint of incompressibility. To cite this article: S. Conti, G. Dolzmann, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

The full text of this article is available in PDF format.

Nous dérivons un modèle bidimensionnel pour les plaques élastiques comme Γ -limite de la théorie de lʼélasticité tridimensionnelle avec contrainte dʼincompressiiblité. La densité dʼénergie du problème réduit est déterminée à partir des modules dʼélastiques de la densité dʼénergie tridimensionnelle à lʼidentité. Sans contrainte dʼincompressibilité, Friesecke, James et Müller sont les premiers à avoir rigoureusement justifié le modèle de plaque en flexion par Γ -convergence. La difficulté principale de lʼextension de ce résultat au cas incompressible réside dans la construction, afin dʼétablir lʼinégalité de Γ -limsup, dʼune suite de déformations satisfaisant la contrainte non-linéaire dʼincompressibilité. Pour citer cet article : S. Conti, G. Dolzmann, C. R. Acad. Sci. Paris, Ser. I 344 (2007).

The full text of this article is available in PDF format.

© 2007  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline