Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 346, n° 3-4
pages 143-148 (février 2008)
Doi : 10.1016/j.crma.2007.12.001
Received : 19 September 2007 ;  accepted : 6 December 2007
Non-homogeneous boundary conditions for a fourth-order diffusion equation
Conditions aux limites non-homogènes pour une équation diffusive quantique stationnaire en une dimension

Pablo Amster a , Ansgar Jüngel b , Daniel Matthes c
a Departamento de Matemática, Cuidad Universitaria, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina 
b Institut für Analysis und Scientific Computing, TU Wien, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria 
c Departimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy 


The existence of classical solutions to a one-dimensional non-linear fourth-order elliptic equation arising in quantum semiconductor modeling is proved for a class of non-homogeneous boundary conditions using degree theory. Furthermore, some non-existence results for other classes of boundary conditions are presented. To cite this article: P. Amster et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

L’existence des solutions classiques pour une équation élliptique non-linéaire d’ordre quatre en une dimension, qui apparaît dans la modélisation des semi-conducteurs quantiques, est démontrée pour une classe de conditions aux limites non-homogènes en utilisant la théorie du degré. En plus, des résultats de non-existence pour d’autres classes de conditions aux limites sont établis. Pour citer cet article : P. Amster et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

© 2007  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline