Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 346, n° 3-4
pages 209-212 (février 2008)
Doi : 10.1016/j.crma.2007.12.007
Received : 6 September 2007 ;  accepted : 11 December 2007
The Neyman–Pearson lemma under g -probability
Lemme de Neyman–Pearson généralisé pour les g -espérances

Shaolin Ji a , Xun Yu Zhou b, c
a School of Mathematics and System Sciences, Shandong University, Jinan, Shandong, 250100, PR China 
b Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK 
c Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong 


The Neyman–Pearson fundamental lemma is generalized under g -probability. With convexity assumptions, a sufficient and necessary condition which characterizes the optimal randomized tests is obtained via a maximum principle for stochastic control. To cite this article: S. Ji, X.Y. Zhou, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

Le lemme fondamental de Neyman–Pearson est généralisé au cas de g -probabilités. Sous des hypothèses de convexité, une condition suffisante et nécessaire caractérisant le test randomisé optimal est obtenue au moyen du principe du maximum dans le cadre du contrôle stochastique. Pour citer cet article : S. Ji, X.Y. Zhou, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

The full text of this article is available in PDF format.

 The authors thank the partial support from the National Basic Research Program of China (973 Program, No. 2007CB814900), the RGC Earmark Grant No. 418606, and a start-up fund at Oxford.
 This Note is the succinct version of a text on file for five years in the Academy Archives.

© 2007  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline