Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 350, n° 9-10
pages 543-547 (mai 2012)
Doi : 10.1016/j.crma.2012.05.002
Received : 30 Mars 2012 ;  accepted : 3 May 2012
Regression on parametric manifolds: Estimation of spatial fields, functional outputs, and parameters from noisy data
Régression sur des variétés paramétriques : estimation de champs spatiaux, sorties fonctionnelles, et paramètres à partir de données bruitées

Anthony T. Patera a , Einar M. Rønquist b
a Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA 
b Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway 


In this Note we extend the Empirical Interpolation Method (EIM) to a regression context which accommodates noisy (experimental) data on an underlying parametric manifold. The EIM basis functions are computed Offline from the noise-free manifold; the EIM coefficients for any function on the manifold are computed Online from experimental observations through a least-squares formulation. Noise-induced errors in the EIM coefficients and in linear-functional outputs are assessed through standard confidence intervals and without knowledge of the parameter value or the noise level. We also propose an associated procedure for parameter estimation from noisy data.

The full text of this article is available in PDF format.

Nous étendons la méthode dʼinterpolation empirique, EIM en abrégé (pour Empirical Interpolation Method), au contexte de la régression en présence de données bruitées sur une variété paramétrique. Les fonctions de bases sont calculées hors-ligne sur la base de la variété sans bruit ; les coefficients EIM dʼune fonction quelconque sur la variété sont calculés en-ligne sur la base des observations expérimentales à travers une formulation moindres carrés. Les erreurs induites par les données bruitées dans les coefficients EIM aussi bien que les sorties fonctionelle-linéaire associées sont quantifiées en intervalles de confiance et sans connaissance ni de la valeur du paramètre ni de la variance du bruit. Nous proposons aussi, dans le même esprit, une procédure dʼestimation de paramètre.

The full text of this article is available in PDF format.

© 2012  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline