Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 351, n° 5-6
pages 197-201 (mars 2013)
Doi : 10.1016/j.crma.2013.03.010
Received : 23 November 2012 ;  accepted : 18 Mars 2013
Solving generalized eigenvalue problems on the interfaces to build a robust two-level FETI method
Une grille grossière robuste pour FETI grâce à la résolution de problèmes aux valeurs propres généralisés sur les interfaces

Nicole Spillane a, b , Victorita Dolean c , Patrice Hauret b , Frédéric Nataf a , Daniel J. Rixen d
a Laboratoire Jacques-Louis-Lions, UMR 7598, université Pierre-et-Marie-Curie (Paris 6), 75252 Paris cedex 05, France 
b Michelin Technology Center, place des Carmes-Déchaux, 63000 Clermont-Ferrand, France 
c Laboratoire Jean-Alexandre-Dieudonné, UMR 6621, université de Nice–Sophia Antipolis, 06108 Nice cedex 02, France 
d Institute of Applied Mechanics, TU München, 85747 Garching, Germany 


FETI is a very popular method, which has proved to be extremely efficient on many large-scale industrial problems. One drawback is that it performs best when the decomposition of the global problem is closely related to the parameters in equations. This is somewhat confirmed by the fact that the theoretical analysis goes through only if some assumptions on the coefficients are satisfied. We propose here to build a coarse space for which the convergence rate of the two-level method is guaranteed regardless of any additional assumptions. We do this by identifying the problematic modes using generalized eigenvalue problems.

The full text of this article is available in PDF format.

La méthode FETI a demontré son efficacité et sa compétitivité sur de nombreux problèmes industriels. Un désavantage est que ses performances dépendent fortement de la distribution des coefficients dans les équations. Ceci est en quelque sorte confirmé par le fait que lʼanalyse théorique requiert des hypothèses sur ces coefficients et le partitionnement. Nous proposons ici la construction dʼun espace grossier telle que le taux de convergence de la méthode à deux niveaux soit garanti sans hypothèses supplémentaires. Cette construction repose sur lʼidentification des modes problématiques grâce à la résolution de problèmes aux valeurs propres généralisés.

The full text of this article is available in PDF format.

© 2013  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline