Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0


Comptes Rendus Mathématique
Volume 351, n° 5-6
pages 203-207 (mars 2013)
Doi : 10.1016/j.crma.2013.03.002
Received : 28 December 2012 ;  accepted : 7 Mars 2013
Subnormality of 2-variable weighted shifts with diagonal core
Sous-normalité de shifts pondérés à deux variables avec cœur diagonal
 

Raúl Enrique Curto a , Sang Hoon Lee b , Jasang Yoon c
a Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA 
b Department of Mathematics, Chungnam National University, Daejeon, 305-764, Republic of Korea 
c Department of Mathematics, The University of Texas-Pan American, Edinburg, TX 78539, USA 

Abstract

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. Given a 2-variable weighted shift T with diagonal core, we prove that LPCS is soluble for T if and only if LPCS is soluble for some power  . We do this by first developing the basic properties of diagonal cores, and then analyzing how a diagonal core interacts with the rest of the 2-variable weighted shift.

The full text of this article is available in PDF format.
Résumé

Le problème du relèvement des opérateurs sous-normaux commutatifs (LPCS) consiste à rechercher des conditions nécessaires ou suffisantes pour que deux opérateurs sous-normaux sur lʼespace de Hilbert admettent des extensions normales commutatives. Étant donné un opérateur de décalage pondéré T à deux variables avec cœur diagonal, nous prouvons que le LPCS est résoluble pour T si et seulement si le LPCS est résoluble pour une certaine puissance  . Nous le faisons en développant dʼabord les propriétés de base des cœurs diagonaux, puis en analysant la façon dont un cœur diagonal interagit avec le reste de lʼopérateur.

The full text of this article is available in PDF format.

 The first named author was partially supported by NSF Grants DMS-0400741 and DMS-0801168. The second named author was partially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0085279). The third named author was partially supported by a Faculty Research Council Grant at The University of Texas-Pan American.



© 2013  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@