Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0


Comptes Rendus Mathématique
Volume 351, n° 5-6
pages 215-219 (mars 2013)
Doi : 10.1016/j.crma.2013.03.009
Received : 7 February 2013 ;  accepted : 15 Mars 2013
The  -Alexander invariant detects the unknot
Lʼinvariant dʼAlexander   détecte le nœud trivial
 

Fathi Ben Aribi
 Institut de mathématiques de Jussieu–Paris Rive gauche, université Paris-Diderot (Paris-7), UFR de mathématiques, case 7012, bâtiment Sophie-Germain, 75205 Paris cedex 13, France 

Abstract

The aim of this note is to prove that the  -Alexander invariant, a knot invariant defined using  -torsions, detects the unknot.

The full text of this article is available in PDF format.
Résumé

Le but de cette note est de démontrer que lʼinvariant dʼAlexander  , un invariant de nœuds défini via des torsions  , détecte le nœud trivial.

The full text of this article is available in PDF format.


© 2013  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline
@@#110903@@