Article

PDF
Access to the PDF text
Service d'aide à la décision clinique
Advertising


Free Article !

Neurochirurgie
Volume 59, n° 4-5
pages 149-158 (août 2013)
Doi : 10.1016/j.neuchi.2013.08.003
Received : 16 Mars 2013 ;  accepted : 6 August 2013
Surgical anatomy of the hippocampus
Anatomie chirurgicale de l’hippocampe
 

C. Destrieux a, , b, c , D. Bourry d, S. Velut a, b, c
a Laboratoire d’anatomie, université François-Rabelais de Tours, 10, boulevard Tonnellé, 37032 Tours cedex, France 
b Inserm U930, UMR « imagerie et cerveau », université François-Rabelais de Tours, 37032 Tours, France 
c Service de neurochirurgie, CHRU de Tours, 37044 Tours, France 
d UFR médecine, département communication et multimédias, université François-Rabelais de Tours, 37032 Tours, France 

Corresponding author.
Abstract
Background and purpose

Hippocampectomy is an efficient procedure for medial temporal lobe epilepsy. Nevertheless, hippocampus anatomy is complex, due to a deep location, and a complex structure. In this didactic paper, we propose a description of the hippocampus that should help neurosurgeons to feel at ease in this region.

Methods

Embryological data was obtained from the literature, whereas adult anatomy was described after dissecting 8 human hemispheres (with and without vascular injection) and slicing 3 additional ones.

Results

The hippocampus is C-shaped and made of 2 rolled-up laminae, the cornu Ammonis and the gyrus dentatus. Its ventricular aspect is covered by the choroid plexus of the inferior horn excepted at the head level. Its cisternal aspect faces the mesencephalon from which it is limited by the transverse fissure. Its rostral part (head) curves dorso-caudally to form the uncus, located at the medial aspect of the temporal lobe. Its caudal part (tail) splits into the fimbria and the gyrus fasciolaris that respectively run ventral and dorsal to the corpus callosum, to become the fornix and indusium griseum.

Conclusion

Consequences of this complex anatomy are presented, and the authors stress the need for a subpial resection. Important landmarks are provided to avoid lesions of the surrounding structures.

The full text of this article is available in PDF format.
Résumé
État de l’art et objectifs

L’hippocampectomie est efficace dans le traitement de l’épilepsie temporale mésiale. Néanmoins, la compréhension de l’anatomie de l’hippocampe est difficile en raison d’une situation profonde et d’une structure complexe. Cet article didactique propose une description schématique de l’hippocampe qui devrait aider la pratique neurochirurgicale de cette région.

Méthode

Les données embryologiques sont issues de la seule littérature, alors que les données anatomiques adultes ont été obtenues après dissection de 8 hémisphères humains injectés ou non et la réalisation de coupes pour 3 autres.

Résultats

L’hippocampe a une forme de « C » et est constitué de 2 lames enroulées, la corne d’Ammon et le gyrus dentatus. Sa portion ventriculaire est recouverte par le plexus choroïde de la corne ventriculaire inférieure sauf au niveau de la tête. Sa portion cisternale fait face au mésencéphale dont il est séparé par la fissure transverse. Sa partie rostrale (tête) s’incurve dorso-caudalement pour former l’uncus. Sa partie caudale (queue) se divise en fimbria et gyrus fasciolaris qui cheminent respectivement aux faces ventrale et dorsale du corps calleux, pour devenir la jambe du fornix et l’indusium gris.

Conclusion

Les conséquences pratiques de cette anatomie sont présentées et les auteurs soulignent l’importance de la dissection sous piale et du respect de repères anatomiques lors de la chirurgie de cette région.

The full text of this article is available in PDF format.

Keywords : Hippocampus, Anatomy, Epilepsy surgery

Mots clés : Hippocampe, Anatomie, Chirurgie de l’épilepsie


Introduction

Most of the epileptic patients suffering an hippocampal sclerosis can be efficiently treated by resection of the hippocampus more or less including the surrounding structures, especially amygdaloid complex and parahippocampal gyrus: after such a surgery, more than 80% of them are seizure free (Engel Class I) [1, 2, 3, 4]. Nevertheless, hippocampus anatomy has the reputation to be very complex and difficult to understand for non-specialized neurosurgeons or neurologists. Hippocampus is indeed a deep structure, hidden between the mesencephalon and medial aspect of the temporal lobe, its main aspect being only visible inside the inferior horn of the lateral ventricle. This anatomical challenge is increased by a complexity in the used terminology, a same structure being differently named in different part of the hippocampus.

The goal of this didactic paper is to provide the reader with a comprehensive and practical anatomy of the hippocampal region and the practical consequences of this anatomy for neurosurgical procedures. We first present a summarized and highly simplified embryological view of this region, in order to give the reader the keys that are mandatory to understand the adult anatomy. We then describe the surface and sectional anatomy of the hippocampus, and finally present influence this anatomy should have in surgical planning. This paper does not aim at a complete description of the hippocampus morphology and function that can be found elsewhere [5, 6], nor in an original description of this region. For this reasons, we only used a limited number of specimens, without any attention paid to inter-subjects variability.

Material and method

For the description of adult anatomy, 11 human brain hemispheres (5 left and 6 right) were obtained from the body donation program of our laboratory. For surface anatomy, we studied 4 hemispheres (2 right 2 left) that were extracted, fixed in a 10% commercial formalin solution for 3 months and then whitened in a 10% commercial hydrogen peroxide solution. To study hippocampus vascularization, two brains were injected with colored latex: after severing the head, red neoprene latex (neoprene latex #671, E. I. Du Pont de Nemours–Dow Elastomers, Wilmington, DE) was injected into the primitive carotid and vertebral arteries, and blue neoprene latex was injected into the jugular veins. Brain was extracted after latex polymerization and fixed as previously described. Dissections were performed under optical magnification and important steps of the dissections were photographed. Relationships of the hippocampus were studied on these dissections but also slices. One additional right hemisphere was sliced following a coronal plane after being fixed, whereas another brain was sliced after carotid and vertebral injection of a mixture of gelatin and india ink.

Due to the didactic aim of this paper, and to the limited number of subjects that does not allow study of variations, photographs of right specimens were presented in their original orientation, whereas those from left specimens were right-left flipped.

The embryologic considerations were obtained from the literature [6, 7, 8].

General situation

The hippocampus is located between the medial aspect of the temporal lobe and the temporal horn of the ventricle. It is part of the limbic lobe (or rhinencephalon), a complex puzzle of various anatomical structures located at the medial aspect of the hemisphere [9]. The limbic lobe (Fig. 1A) is limited from the surrounding cortex by the limbic fissure, and is divided into 2 concentric circles, the limbic and intralimbic gyri.



Fig. 1


Fig. 1. 

Development and adult anatomy of the limbic system. A. Gross anatomy of the adult limbic lobe. The limbic fissure that separates the limbic lobe from the surrounding cortex is made of: the cingulate (cing s), subparietal (subpar s), anterior calcarine (ant calc s), collateral (coll s) and rhinal sulci (rhin s). The limbic lobe contains the limbic gyrus [Light grey: subcallosal (sc g), cingulate (cing g), isthmus (i), and parahippocampal gyri (pHg)] and the intralimbic gyrus [Dark grey: prehippocampal rudiment (preHr), indusium griseum (ig), and hippocampus proper (Hp)]. B. Development of the hippocampal and callosal commissures. The optic chiasm (oc), anterior commissure (ac), hippocampal commissure (Hc) and callosal commissure (cc) develop from the commissural plate of the midline telencephalon (telencephalon impar). The hippocampal commissure first develops and follows the rotation of the telencephalic vesicle (tv) towards the temporal lobe. As it develops, the corpus callosum splits the hippocampal commissure in dorsal and ventral parts. The ventral hippocampus gives the adult fornix (A, fx), whereas the dorsal hippocampus involutes as the indusium griseum (A, ig) and prehippocampal rudiment (A, PreHR). Ventral to the splenium (A, splen), the ventral and dorsal hippocampus join to give the hippocampus proper (Hp).

Développement et anatomie adulte du système limbique. A. Anatomie du lobe limbique. La fissure limbique, qui sépare le lobe limbique du cortex avoisinant, est constituée des sulci : cingulaire (cing s), subparietal (subpar s), calcarin antérieur (ant calc s), collatéral (coll s) et rhinal (rhin s). Le lobe limbique contient le gyrus limbique [gris clair : gyri subcalleux (sc g), cingulaire (cing g), isthme cingulaire (i), et parahippocampique (pHg)] et le gyrus intralimbique [gris foncé : rudiment préhippocampique, (preHr), indusium griseum (ig), et hippocampe propre (Hp)]. B. Développement des commissures hippocampique et calleuse. Le chiasma optique (oc), les commissures antérieure (ac), hippocampique (Hc) et calleuse (cc) se développent à partir de la plaque commissurale du télencéphale médian (telencephalon impar). La commissure hippocampique est la première à se développer. Elle suit la rotation des vésicules télencéphaliques (tv) vers le lobe temporal. Le développement du corps calleux induit ensuite la séparation de la commissure hippocampique en deux parties, ventrale et dorsale. L’hippocampe ventral donne le fornix (A, fx), tandis que l’hippocampe dorsal involue pour se transformer en indusium griseum (A, ig) et rudiment préhippocampique (A, PreHR). Ventralement au splénium (A, splen), les parties ventrale et dorsale de l’hippocampe se rejoignent pour former l’hippocampe propre (Hp).

Zoom

The discontinuous limbic fissure includes:

the cingulate sulcus, between the anterior and middle parts of the cingulate gyrus and the superior frontal gyrus;
the subparietal sulcus that limits the posterior part of the cingulate gyrus from the precuneus;
the anterior segment of the calcarine sulcus, running between the isthmus of the cingulate gyrus and the lingual gyrus (or 05);
the temporal, anterior part of the collateral or medial temporo-occipital or T4-T5 sulcus that limits the lateral temporo-occipital gyrus (or fusiform gyrus) from the medial temporo-occipital gyrus. The later includes a temporal part (parahippocampal gyrus or T5) and an occipital part (lingual gyrus or O5);
and the rhinal sulcus, located between the limbic lobe and temporal pole.

The limbic gyrus forms the peripheral circle of the limbic lobe, its outer limit being the limbic fissure; it contains:

the subcallosal gyrus located bellow the rostrum of the corpus callosum;
the cingulate gyrus including its isthmus;
and the parahippocampal, or T5, or temporal part of the medial occipito-temporal gyrus.

Finally the intralimbic gyrus, which is the inner circle of the limbic lobe, corresponds to the adult hippocampus and its embryological remnants:

the prehippocampal rudiment or precommissural hippocampus, located in the depth of the paraterminal gyrus;
the indusium griseum or supracommissural hippocampus that follows the cingulate gyrus around the rostral, dorsal, and caudal aspects of the corpus callosum;
and the hippocampus proper or retrocommissural hippocampus that lies at the superior aspect of the parahippocampal gyrus.

Embryology and compared anatomy

This complex organization of the hippocampus and related structures is nicely explained by embryology and compared anatomy. During its development the hippocampus experiences 3 important changes from which its complex shape derives.

Rotation around the developing basal ganglia and thalamus

As they develop, the lateral parts of the telencephalon – or telencephalic vesicles – rotate dorso-caudally, then ventrally and finally rostrally to give the adult frontal, parietal, occipital and temporal lobes. The small part of the telencephalon located on the midline (telencephalon impar), just dorsal to the optic chiasm, thickens to give the commissural plate, which is the precursor for the anterior, callosal and hippocampal commissures (Fig. 1B). The Hippocampal commissure first follows the telencephalic rotation and extends from the supra optic to the temporal regions. The callosal commissure then also develops from the commissural plate and progressively splits the hippocampal commissure in a ventral and a dorsal parts (Fig. 1B):

the part of the hippocampal commissure ventral to the callosal commissure or subcallosal part, gives the adult fornix;
its dorsal part can be subdivided in precommissural and supra commissural, the respective precursors for the prehippocampal rudiment and indusium griseum;
finally, in the temporal region (retrocommissural part), the hippocampal commissure is not divided by the callosal commissure and becomes the hippocampus proper.

As a consequence, in the adult (Fig. 1A), the indusium griseum continues the tail of hippocampus dorsal to the corpus callosum, whereas the fornix is the expansion of the hippocampal fimbria, ventral to the corpus callosum.

Invagination into the medial temporal lobe

In acallosal mammals (such as ornithorhynchus anatinus), the hippocampus is organized around a longitudinal hippocampal sulcus that invaginates at the medial wall of the hemisphere and remains clearly visible in the adult. In Humans, such a hippocampal sulcus - although less visible -also exists at the medial aspect of the temporal lobe and ventrally limits the hippocampus from the underlying parahippocampal gyrus (Fig. 2).



Fig. 2


Fig. 2. 

Structure of the hippocampus body. A. Frontal slice of a right hemisphere after india ink injection. The temporal lobe is limited dorsally by the lateral fissure (lat fiss), and medially by the ambient cistern (amb cst) and its lateral expansion, the transverse fissure (tr fis). The temporal lobe is attached to the hemisphere by the temporal stem (T stem). The hippocampus (Hp) lies at the dorsal aspect of the parahippocampal gyrus (pHg-T5): cingg: cingulate gyrus; cings: cingulate sulcus; cols: collateral sulcus; F1: superior frontal gyrus; F2: middle frontal gyrus; F3: inferior frontal gyrus; ifs: inferior frontal sulcus; its: inferior temporal sulcus; ltos: lateral occipito-temporal sulcus; ot: optical tract; sfs: superior frontal sulcus; sts: superior temporal sulcus; T1: superior temporal gyrus; T2: middle temporal gyrus; T3: inferior temporal gyrus; T4: fusiform gyrus. B. Schematic coronal slice of the hippocampus body displaying its structure and relationships. The hippocampus is made of two rolled-up laminae: the cornu Ammonis (CA1 to CA4), which continues the subiculum (subic), and the gyrus dentatus (gd). The floor of the inferior horn of the ventricle (lv) is lined by the hippocampus covered by the alveus (alv) continued by the fimbria (fi) medially, and by the collateral eminence (col em) laterally. At the level of the hippocampus body, the ventricle roof is made by the temporal stem (T stem) that contains the temporal loop of the optical radiations, by the tail of the caudate nucleus (tcn), and by the stria terminalis (st). Medially the ventricle is bordered by the tela choroïdea (tela chor) that joins the taenia of the stria terminalis (tae st) to the taenia of the fimbria (tae fi). The choroid plexus (ch pl) arises from the tela choroïdea and covers most of the hippocampus body. The extraventricular aspect of the hippocampus faces the transverse fissure (tr fis), the lateral expansion of the ambient cistern (amb cst). It is limited from the subiculum by the hippocampal sulcus (Hs). The superficial aspect of the gyrus dentatus is seen as the margo denticulatus (md), just dorsal to this hippocampal sulcus. The margo denticulatus is located just ventral to the fimbria from which it is limited by the fimbrio-dentate sulcus (fds).

Structure du corps de l’hippocampe. A. Coupe frontale d’un hémisphère droit après injection d’encre de chine. Le lobe temporal est limité dorsalement par la fissure latérale (lat fiss) et médialement par la citerne ambiante (amb cst) et son extension latérale, la fissure transverse (tr fis). Le lobe temporal est relié à l’hémisphère cérébral par le pédoncule ou isthme temporal (T stem). L’hippocampe (Hp) se situe à la face dorsale du gyrus parahippocampique (pHg-T5) : cingg : gyrus cingulaire ; cings : sulcus cingulaire ; cols : sulcus collatéral ; F1 : gyrus frontal supérieur ; F2 : gyrus frontal moyen ; F3 : gyrus frontal inférieur ; ifs : sulcus frontal inférieur ; its : sulcus temporal inférieur ; ltos : sulcus occipito-temporal latéral ; ot : tractus optique ; sfs : sulcus frontal supérieur ; sts : sulcus temporal supérieur ; T1 : gyrus temporal supérieur ; T2 : gyrus temporal moyen ; T3 : gyrus temporal inferieur ; T4 : gyrus fusiforme. B. Coupe coronale schématique de l’hippocampe montrant ses rapports et sa structure. L’hippocampe est constitué de deux lames enroulées l’une sur l’autre : la corne d’Ammon (CA1 à CA4) qui poursuit le subiculum (subic), et le gyrus dentatus (gd). Le plancher de la corne inférieure du ventricule (lv) est formé par l’hippocampe recouvert de l’alveus (alv). Celui-ci se poursuit médialement par la fimbria (fi), et latéralement par l’éminence collatérale (col em). Au niveau du corps de l’hippocampe, le toit du ventricule est constitué du pédoncule ou isthme temporal (T stem) – qui contient la boucle temporale des radiation optiques –, de la queue du noyau caudé (tcn), et de la strie terminale (st). Médialement le ventricule est limité par la toile choroïdienne (tela chor) qui relie le ténia de la strie terminale (tae st) à celui de la fimbria (tae fi). Le plexus choroïde nait de la toile choroïdienne (ch pl) et recouvre la majeure partie du corps de l’hippocampe. La surface extraventriculaire de l’hippocampe regarde la fissure transverse (tr fis), expansion latérale de la citerne ambiante (amb cst). L’hippocampe est séparé du subiculum par le sillon hippocampique (Hs). En surface, le gyrus dentatus apparaît sous la forme de la margo denticulatus (md), elle même juste dorsale au sillon hippocampique. La margo denticulatus est située ventralement à la fimbria dont elle est séparée par le sillon fimbrio-denté (fds).

Zoom

Rotation along the hippocampus longitudinal axis

In human, the apparition of the hippocampal sulcus is accompanied by a rotation along the longitudinal axis of the hippocampus, which gets a complex rolled structure (Fig. 2B). Afterwards, the hippocampal sulcus involutes deeply and remains only visible at surface of the medial aspect of the temporal lobe. Due to this rotation and to an increasing volume, the resulting adult human hippocampus bulges in the ventricle.

Descriptive anatomy and structure

Seen from above (Fig. 3) the hippocampus resembles a “C” medially concave around the mesencephalon. Three parts can be described: the body (middle part) running sagittally, the head which is larger and runs rostro-medially, and the tail, the thinner part, coursing caudo-medially and dorsally. These 3 parts are made of a 3-layered allocortex.



Fig. 3


Fig. 3. 

Superior (A, ventricular) and lateral (B) views of the right hippocampus; (C) schematic drawing of the tela choroïdea. A. Superior view of the right hippocampus. The temporal lobe was cut at the level of the middle temporal gyrus (T2) to open the inferior horn of the lateral ventricle. The brainstem and diencephalon were removed. B. Lateral view of the right hippocampus. The temporal lobe was also cut at the level of the middle temporal gyrus (T2) but the thalamus (thal), basal ganglia (bas gg) and insula (insula) were partially preserved. The choroid plexus (chor pl) is partially upward retracted to show the underlying hippocampus. The hippocampus lies at the superior aspect of the subiculum (subic) and is C-shaped: its body (H body) has a sagittal axis, whereas its tail (H tail) and head (H head) are mainly coronal. The ventricular surface of the hippocampus is laterally continued by the collateral eminence (col em) that caudally enlarges to become the collateral trigone (col trig). It is medially limited from the cisternal aspect of the hippocampus by the fimbria (fi) that is dorso-caudo-medially continued by the crus of the fornix (fx). C. Schematic drawing of the tela choroïdea. The choroid plexus (chor pl) originates from the tela choroïdea (dark and light grey strip) that joins the taenias. Taenias are thickenings of the ventricular walls: taenia of the habenula (t-hab) for the third ventricle (V3); taenias of the fornix (t-fx) and thalamus (t-thal) at the level of the body of the lateral ventricle; and taenias of the stria terminalis (t-st) and fimbria (t-fi) in the inferior horn. The choroid plexus covers the ventricular aspect of the hippocampus caudal to the anterior choroid point (a ch pt) where the taenias of the fimbria and stria terminalis join. As a consequence, the hippocampus head, which is rostral to this anterior choroid point, is free of choroid plexus. splen: splenium of the corpus callosum.

Vues supérieure (A, ventriculaire) et latérale (B) de l’hippocampe droit ; (C) représentation schématique de la toile choroïdienne. A. Vue supérieure de l’hippocampe droit. Le lobe temporal a été sectionné au niveau du gyrus temporal moyen (T2) afin d’ouvrir la corne inférieure du ventricule latéral. Le tronc cérébral et le diencéphale ont été réséqués. B. Vue latérale de l’hippocampe droit. Le lobe temporal a aussi été coupé horizontalement au niveau du gyrus temporal moyen (T2) mais le thalamus (thal), les ganglions de la base (bas gg) et l’insula (insula) ont été partiellement préservés. Le plexus choroïde (chor pl) est rétracté vers le haut pour montrer l’hippocampe sous-jacent. L’hippocampe, qui repose à la surface supérieure du subiculum (subic), a la forme d’un « C » : son corps (H body) suit un axe sagittal, tandis que sa queue (H tail) et sa tête (H head) sont globalement orientées coronalement. La surface ventriculaire hippocampique se poursuit latéralement par l’éminence collatérale (col em) qui s’élargit caudalement pour devenir le trigone collatéral (col trig). La surface ventriculaire est médialement séparée de la surface hippocampique cisternale par la fimbria (fi). Cette dernière s’oriente dorso-caudo-médialement et se poursuit par la jambe du fornix (fx). C. Représentation schématique de la toile choroïdienne. Le plexus choroïde (chor pl) est une évagination de la toile choroïdienne (bande grise) tendue entre les ténias. Les ténias sont des épaississements des parois ventriculaires : ténias habénulaires (t-hab) pour le 3e ventricule (V3) ; ténias du fornix (t-fx) et du thalamus (t-thal) au niveau du corps du ventricule latéral ; et ténias de la strie terminale (t-st) et de la fimbria (t-fi) dans la corne inférieure. Le plexus choroïde recouvre la surface ventriculaire de l’hippocampe située caudalement au point choroïdien antérieur (a ch pt), où les ténias de la fimbria et de la strie terminale se rejoignent. En conséquence, la tête de l’hippocampe, rostrale à ce point choroïdien antérieur, est dépourvue de plexus choroïde. splen : splénium du corps calleux.

Zoom

Body of the hippocampus

The complex anatomy of the hippocampus body is better understood after a simultaneous description of its structure (Fig. 2) and surface anatomy (Fig. 3).

Structure

It is nicely depicted on a coronal slice (Fig. 2). The hippocampus is made of 2 cortical laminae rolled-up inside the other: the cornu Ammonis and the gyrus dentatus:

the cornu Ammonis laterally continues the subiculum, which is the flat superior aspect of the parahippocampal or T5 gyrus. The cornu Ammonis can be subdivided in 4 different fields regarding the cytoarchitectonics of its the pyramidal layer, namely CA1 (close to the subiculum) to CA4 (within the concavity of the gyrus dentatus). A thin white layer, the alveus, covers the cornu Ammonis and medially ends as the fimbria;
the gyrus dentatus is a dorso-medially concave groove that contains the CA4 field. Its medial aspect faces the transverse fissure and is limited from the fimbria by the fimbrio-dantate sulcus located dorsally, and from the subiculum, located ventrally, by the hippocampal sulcus. Due to its location, this part of the gyrus dentatus (known as the margo denticulate) is only visible at the medial, extraventricular aspect of the hippocampal body.

Intraventricular aspect of the hippocampus body

The hippocampus forms the major part of the floor of the inferior (or temporal) horn of the lateral ventricle. It appears (Fig. 2B, Fig. 3, Fig. 4A) as a bulge that mainly corresponds to CA1 to CA3 covered by the alveus. The floor of the inferior horn is laterally continued by the collateral eminence, a less marked bump facing the depth of the bottom of the collateral or T4-T5 sulcus. Medially the floor of the inferior horn is limited by the fimbria, posteriorly continued by the crus of the fornix.



Fig. 4


Fig. 4. 

Superior (A, ventricular) and medial (B and C, cisternal) views of the right hippocampus. A. Superior view of the right hippocampus. The temporal lobe was cut to open the inferior horn of the lateral ventricle. The brainstem and diencephalon were removed, as was the choroid plexus. After removing the amygdaloid complex (amyg) that covers the hippocampal head, the hippocampal digitations (Hdig) clearly appear at the superior aspect of the head. The hippocampus is laterally bordered by the collateral eminence (col em) and collateral trigone (col trig) that respectively continue the floor of the inferior horn and atrium (atrium). The bottom of the calcarine sulcus bumps in the atrium as the calcar avis (c avis). B. Medial view of the right hippocampus. The mesencephalon and part of the diencephalon were removed. The medial or cisternal aspect of the hippocampus body is limited from the subiculum (subic) by the hippocampal sulcus (Hs). The subiculum is the flat superior aspect of the parahippocampal gyrus (pHg) or T5. The margo denticulatus (md) is the aspect of the gyrus dentatus visible on a medial view: it is located just dorsal to the hippocampal sulcus and has an irregular surface. The fimbria (fi) is located at the limit between the intraventricular and cisternal aspects of the hippocampus. It is ventrally limited from the margo denticulatus by the fibrio-dentate sulcus (f-ds). At the level of the hippocampus head, the rostral part of the hippocampus and parahippocampal gyrus curve dorso-caudally to form the uncus, which is limited from the subiculum (subic) by the uncal sulcus (us). The dashed line shows the limit between the parahippocampal (uncus-pH, rostral) and hippocampal (uncus-H, caudal) parts of the uncus. C. Detail of the medial aspect of the uncus. The hippocampal part of the uncus is made: caudally of the uncal apex (ua) on which the fimbria ends; of the medial band of Giacomini (bG) that corresponds to the dentate gyrus; and rostrally of the uncal gyrus (ug). The parahippocampal part of the uncus is a part of the piriform lobe that also contains the entorhinal area (ea). The uncal part of the piriform lobe may be subdivided in a ventral ambient gyrus (ag), and a dorsal semilunar gyrus (slg) that medially covers the amygdaloid body.

Vue supérieure (A, ventriculaire) and médiale (B et C, cisternale) de l’hippocampe droit. A. Vue supérieure de l’hippocampe droit. Le lobe temporal a été sectionné pour ouvrir la corne inférieure du ventricule latéral. Le tronc cérébral, le diencéphale et le plexus choroïde ont été réséqués. Apres ablation du complexe amygdaloide (amyg) qui recouvre la tête de l’hippocampe, les digitations hippocampiques (Hdig) apparaissent à la face supérieure de cette dernière. L’hippocampe est longé par l’éminence collatérale (col em) et le trigone collatéral (col trig) qui étendent latéralement respectivement le plancher de la corne intérieure et de l’atrium (atrium). Le fond du sulcus calcarin forme un relief dans l’atrium, le calcar avis (c avis). B. Vue médiale de l’hippocampe droit. Le mésencéphale et une partie du diencéphale ont été réséqués. La surface médiale–ou cisternale–du corps de l’hippocampe est séparée du subiculum (subic) par le sillon hippocampique (Hs). Le subiculum est la surface supérieure, plane, du gyrus parahippocampique (pHg) ou T5. Le margo denticulatus (md) est la partie du gyrus dentatus visible sur une vue médiale : il est juste dorsal au sillon hippocampique et a une surface irrégulière. La fimbria (fi) est située à la limite entre les surfaces ventriculaire et cisternale de l’hippocampe. Elle est séparée ventralement de la margo denticulatus par le sillon fibrio-denté (f-ds). Au niveau de la tête hippocampique, la partie rostrale de l’hippocampe et du gyrus parahippocampique se recourbent dorso-caudalement pour former l’uncus. L’uncus est limité du subiculum (subic) par le sulcus unciné (us). La ligne pointillée montre la limite entre les portions parahippocampique (uncus-pH, rostrale) et hippocampique (uncus-H, caudale) de l’uncus. C. Détail de la surface médial de l’uncus. La portion hippocampique de l’uncus est formée : caudalement de l’apex uncal (ua) sur lequel se termine la fimbria ; de la bande médiale de Giacomini (bG) qui correspond au gyrus dentatus ; et rostralement par le gyrus unciné (ug). La partie parahippocampique de l’uncus fait partie du lobe piriforme, qui contient en outre l’aire entorhinale (ea). La partie uncale du lobe piriforme peut être subdivisé en gyrus ambiens (ag), ventral, et en gyrus semilunaire (slg), dorsal. Ce dernier recouvre médialement le complexe amygdaloïde.

Zoom

The hippocampus faces the roof of the inferior horn of the lateral ventricle. This roof is made (Fig. 2):

deeply, of the temporal stem that contains several white matter tracts including the temporal (or Meyer's) loop of the optic radiations [10, 11];
and superficially of the tail of the caudate nucleus laterally, and of the stria terminalis medially. The latter is an association path between the amygdala and the septal area.

Medially, the inferior horn of the lateral ventricle is closed by the tela choroïdea (Fig. 3C). The later is a juxtaposition of pia mater and ependyma attached between thickenings of the ventricles walls, the taenias. The tela choroïdea is attached between the taenias of the habenulas in the 3rd ventricle; between the taenia of the thalamus and the taenia of the fornix in the body of the lateral ventricle; and between the taenia of the stria terminalis and the taenia of the fimbria in the inferior horn. The choroid plexus is an intraventricular expansion of the tela choroïdea that covers most of the hippocampus body.

Extraventricular (or cisternal) aspect of the hippocampus body

Only a narrow part of the hippocampus is visible at the medial aspect of the temporal lobe (Fig. 3B and Fig. 4B). It is made of several structures, namely from dorsal to ventral: the fimbria; the fibrio-dentate sulcus; the margo denticulatus that is the tooth-shaped visible part of the gyrus dentatus; finally, the hippocampal sulcus that limits the margo denticulatus from the subiculum.

Relationships of the hippocampus body

The Ambient cistern is located between the mesencephalon and the medial aspect of the temporal lobe (Fig. 2B, Fig. 5A). This cistern contains, from cranial to caudal, the P2 segment of the posterior cerebral artery and basal vein, the posterolateral choroïdeal arteries, the collicular arteries and the superior cerebellar artery.



Fig. 5


Fig. 5. 

Cisternal relationships and Vascularization of the hippocampus. A. Superior view of the right hippocampus and mesencephalon. The inferior horn was opened to show the hippocampus head (H head), fimbria (fi), and collateral eminence (col em). Most of the hippocampus is hidden by the choroid plexus (cho pl). Extraventricularly, the subiculum (subic) and margo denticulatus (md) are covered by an arterial network arising from the posterior cerebral artery (PCA) or temporal arteries by several hippocampal arteries (HA). This network is especially dense along the hippocampal sulcus (Hs). The P1 segment of the posterior cerebral artery runs in the intercrurate cistern (ic cist), whereas its P2 segment run in the crural cistern (cru cst) and then in the ambient cistern, along the margin of the parahippocampal gyrus. The ambient cistern (amb cst) is located between the mesencephalon and the hippocampus body and also contains: the basal vein (bv), the posterolateral choroïdeal arteries, the collicular arteries and the superior cerebellar artery. At the tail level, the ambient cistern is continued by the quadrigeminal cistern (qua cst) that contains the venous confluent of the basilar veins, cerebral and great cerebral veins (vc), P2, and the posteromedial choroïdeal arteries (pmChoA) for the roof of the third ventricle. B. Inferior view of the brain. The left temporal lobe was partially resected to show the ventricle and the relationships of the uncus and anterior choroideal artery (AchoA). This artery originates from the internal carotid artery (ICA), just dorsal to the origin of the posterior communicating artery (PCoA). It runs at the medial and then superior aspect of the uncus to reach the choroid plexus (Cho pl). On the way it gives perforators (P) for its deep territory that usually includes the internal capsule. In the anterior perforated substance (APS), these perforators are in close relationships with those of the middle cerebral artery (MCA), and vascular balances between AchoA and MCA occur for these deep territories. On this specimen, the left P1 is atrophic, and P2 directly arise from the PcoA (fetal type). II: optic nerve; III: oculomotor nerve; ACA: anterior cerebral artery; BA: basilar artery; AICA: antero-inferior cerebellar artery ; SCA : superior cerebellar artery.

Rapports cisternaux et vascularisation de l’hippocampe. A. Vue supérieure de l’hippocampe droit et du mésencéphale. La corne ventriculaire inférieure a été ouverte pour montrer la tête de l’hippocampe (H head), la fimbria (fi), et l’éminence collatérale (col em). L’hippocampe est caché par le plexus choroïde (cho pl). À la face cisternale de l’hippocampe, le subiculum (subic) et la margo denticulatus (md) sont parcourus par un réseau artériel, particulièrement dense le long du sillon hippocampique (Hs). Ce réseau est alimenté par des artères hippocampiques (HA) qui proviennent de l’artère cérébrale postérieure (PCA) ou d’artères temporales. Le segment P1 de la l’artère cérébrale postérieure chemine dans la citerne intercrurale (ic cist). Son segment P2 longe le gyrus parahippocampique, dans la citerne crurale (cru cst) puis dans la citerne ambiante (amb cst). La citerne ambiante (amb cst) sépare le mésencéphale du corps de l’hippocampe. Elle contient, outre P2, la veine basale (bv), les artères choroïdiennes postéro-latérales, les artères colliculaires, et l’artère cérébelleuse supérieure. Au niveau de la queue de l’hippocampe, la citerne ambiante se poursuit par la citerne quadrijumelle (qua cst), qui contient : le confluent veineux des veines basilaires, des veines cérébrales internes et de la grande veine cérébrale (vc) ; P2 ; et les artères choroïdiennes postéro-médiales (pmChoA) destinées à la toile choroïdienne du troisième ventricule. B. Vue inférieure du cerveau. Le lobe temporal gauche a été partiellement réséqué pour montrer le ventricule et les rapports de l’uncus et de l’artère choroïdienne antérieure (AchoA). Cette artère naît de l’artère carotide interne (ICA), juste dorsalement à l’origine de l’artère communicante postérieure (PCoA). Elle chemine à la face médiale puis à la face supérieure de l’uncus pour rejoindre le plexus choroïde (Cho pl). Sur ce trajet, elle abandonne des artères perforantes (P) destinées à son territoire profond qui inclut en général la capsule interne. Dans l’espace perforé antérieur (APS), ces artères perforantes sont en rapport étroit avec celles issues de l’artère cérébrale moyenne (MCA), ce qui explique que des balances entre les territoires profonds des AchoA et MCA puissent survenir. Sur ce spécimen, P1 est atrophique et P2 naît directement de PcoA (type fœtal). II : nerf optique ; III : nerf oculomoteur ; ACA : artère cérébrale antérieure ; BA : artère basilaire ; AICA : artère cérébelleuse antéro-inférieure ; SCA : artère cérébelleuse supérieure.

Zoom

The transverse fissure (Fig. 2) is a lateral expansion of the ambient cistern. It invaginates between the subiculum, located ventrally, the optic tract, lateral geniculate body and pulvinar dorsally, and the extraventricular part of the hippocampus and tela choroïdeal laterally. It contains vessels for the hippocampus and subiculum.

Head of the hippocampus

Several changes occur in the head of the hippocampus both intra- (Fig. 4A) and extraventricularly (Fig. 4B).

Intraventricular aspect of the hippocampus head

The fimbria ends at the tip of the uncus (see bellow).

Since the taenia fimbria and the taenia stria terminalis join, the tela choroidea, which runs between them, disappears. This junction, also known as velum terminale or inferior choroid point, is located at the junction between the head and body of the hippocampus. As an important consequence, the head of the hippocampus is free of choroid plexus (Fig. 3).

The cornu Ammonis takes an undulated shape that induces digitations at the surface of the head (Fig. 4A).

The superior aspect of the hippocampal head is covered by the amygdala that bumps into the ventricle.

Extraventricular (or cisternal) aspect of the hippocampus head

The piriform lobe is the rostral part of the parahippocampal gyrus. It is subdivided in the entorhinal area, located caudally that continues the subiculum, and in an uncal part.

The uncal part of the piriform lobe and the rostral part of the hippocampus curve dorso-caudally to form a hook known as the uncus (Fig. 4B and C). This organization of the uncus has two consequences: firstly, its ventral aspect faces the dorsal one of the subiculum (parahippocampal gyrus) from which it is limited by the uncal sulcus; and secondly, the uncus contains 2 parts of different origin:

the rostral part of the uncus has a parahippocampal origin, since it belongs to the piriform lobe. The uncal part of the piriform lobe may be subdivided into: the ambient gyrus that directly continues the entorhinal area, and the semilunar gyrus that medially covers the amygdaloid complex;
the posterior part of the uncus belongs to the hippocampus and ends as the uncal apex, a region having the shape of a cone, on the top of which the fimbria is attached. Two regions are described rostral to the uncal apex:
the medial band of Giacomini that corresponds to the terminal part of the gyrus dentatus: the margo denticulatus, originally follows a caudo-rostral horizontal direction at the medial aspect of the hippocampus. It then takes a latero-medial course at the ventral aspect of the uncus. As it reaches the medial aspect of the uncus, its direction changes again to become vertical,
the uncinate gyrus, which corresponds to CA1, is rostral to the medial band of Giacomini, and immediately caudal to the ambient gyrus.

Relationships of the hippocampus head

The uncus is located just bellow the amygdaloid complex (Fig. 4). The rostral segment of the uncus is the lateral limit of the anterior perforated substance. It thus has close relationships with the oculomotor nerve, M1 segment of the middle cerebral artery and its lenticulostriate arteries (Fig. 5B). The anterior choroïdeal artery runs at the medial and then superior aspects of the uncus, between the ambient and semilunar gyri. It finally reaches the ventricle and choroid plexus after giving perforating arteries to its deep territory.

The caudal part of the head (Fig. 5A) faces the crus cerebri and crural cistern, and is in relationships with the P2 segment of the posterior cerebral artery and basal vein.

Tail of the hippocampus

Major changes also occur in the hippocampal tail as compared to its body:

the tail runs caudally but also medially and dorsally (Fig. 3, Fig. 4);
as explained by embryology (Fig. 1), the different components of the hippocampus, originally packed in the body, split to run dorsal or ventral to the splenium of the corpus callosum.

Intraventricular part of the tail

The organization of the intraventricular part of the tail (Fig. 4A) is similar to the one of the body: medially, the floor of the atrium is made of the tail, and laterally of the collateral trigone, an enlargement of the collateral eminence. The calcar avis is a marked relief facing the bottom of the calcarine sulcus that bumps into the floor of the atrium. Medially, the tail is limited by the fimbria that ascends and becomes the crus of the fornix.

Extraventricular part of the tail

The tail (Fig. 6) experiences 2 major changes:

the superficial relief of the gyrus dentatus, or margo denticulatus becomes completely smooth and is called fasciola cinerea in the tail. As it runs caudally toward the splenium of the corpus callosum, it narrows and finally disappears. Similarly to the margo denticulatus it continues, the fasciola cinerea is also ventrally limited by the hippocampal sulcus;
as a consequence to the ascending direction of the fimbria and crus of the fornix, the distance between the fimbria/fornix and margo denticulatus/fasciola cinerea increases. An additional gyrus, the gyrus fasciolaris, appears in between, and replaces the fibrio-dentate sulcus, which was originally present in the hippocampus body. The gyrus fasciolaris then courses ventral to the splenium and is therefore renamed subsplenial gyrus. It then follows the course of the cingulum and becomes the indusium griseum or supra commissural hippocampus that runs caudal and then dorsal to the corpus callosum to finally reach the subcallosal region (prehippocampal rudiment).



Fig. 6


Fig. 6. 

Intraventricular and cisternal aspects of the hippocampal tail. A. The hippocampus was dissected as in Fig. 3A and Fig. 4A and a coronal section was performed at the level of the posterior part of the body. B. Enlargement of the medial (cisternal) aspect of the hippocampal tail. The fasciola cinerea (fs) is the caudal extension of the margo denticulatus (md) that progressively becomes smooth and thin and finally disappears. The fimbria (fi) follows a dorso-caudo-medial course, to become the crus of the fornix (fx). As a consequence, the space between the fimbria and the margo denticulatus enlarges and the gyrus fasciolaris (gf) replaces the fibrio-dentate sulcus (f-ds). The gyrus fasciolaris turns ventral to the splenium (splen), and is continued by the subsplenial gyrus (ssg) that follows the course of the isthmus (i) of the cingulaire gyrus, and finally becomes the indusium griseum. ant calc s: anterior segment of the calcarine sulcus; col em: collateral eminence; col trig: collateral trigone; Hs: hippocampal sulcus; pHg: parahippocampal gyrus; subic: subiculum; us: uncal sulcus.

Vue-coupe des surfaces intraventriculaire et cisternale de la queue de l’hippocampe. A. L’hippocampe a été disséqué comme indiqué Fig. 3A et Fig. 4A, puis une coupe coronale a été réalisée à la partie postérieure du corps de l’hippocampe. B. Détail de la surface médiale (cisternale) de la queue de l’hippocampe. La fasciola cinerea (fs) est l’extension caudale de la margo denticulatus (md) qui devient progressivement lisse, s’amincit, puis disparaît. La fimbria (fi) suit un trajet ascendant, dorso-caudo-médial pour devenir la jambe du fornix (fx). En conséquence, l’espace entre la fimbria et la margo denticulatus s’élargit et le gyrus fasciolaris (gf) remplace le sillon fibrio-denté (f-ds). Le gyrus fasciolaris contourne ventralement le splénium (splen), et se poursuit par le gyrus subsplénial (ssg) qui suit l’isthme (i) cingulaire et devient finalement l’indusium griseum. ant calc s : segment antérieur du sillon calcarin ; col em : éminence collatérale ; col trig : trigone collatéral ; Hs : sulcus hippocampique ; pHg : gyrus parahippocampique ; subic : subiculum ; us : sillon unciné.

Zoom

Tail relationships

As for the body, the tail is the lateral limit of the transverse fissure (Fig. 7) that contains the medial atrial vein. Posteriorly, the transverse fissure communicates with the quadrigeminal cistern that contains: P2, the posteromedial choroïdeal arteries for the roof of the 3D ventricle, and the terminal segments of the internal cerebral and basilar veins into the great cerebral vein.



Fig. 7


Fig. 7. 

Relationships of the uncus (A) and tail (B) of the hippocampus. Coronal sections. amyg: amygdala; atr: atrium of the lateral ventricle; cingg: cingulate gyrus; cings: cingulate sulcus; cl: claustrum; cn: caudate nucleus; cols: collateral sulcus (T4-T5); F1: superior frontal gyrus; F2: middle frontal gyrus; F3: inferior frontal gyrus; gpl: globus pallidus lateral; gpm: globus pallidus medial; Ht: hippocampal tail; ih: inferior horn of the lateral ventricle; ins: insula; intc: internal capsule; ips: intraparietal sulcus; lf: lateral fissure; lvb: body of the lateral ventricle; mb: mamillary body; mcp: middle cerebellar peduncle; mo: medulla oblongata; or: optic radiations; ot: optic tract; pcg: precentral gyrus; pg: pineal gland; pocg: post-central gyrus; pu: putamen; scol: superior colliculus; smg: supramarginal gyrus; sts: superior temporal sulcus (T1-T2); T1: superior temporal gyrus; T2: middle temporal gyrus; T3: inferior temporal gyrus; T4: fusiform gyrus; T5: parahippocampal gyrus; thal: thalamus; tstem: temporal stem; uncs: uncal sulcus; v3: third ventricle; v4: fourth ventricle.

Rapports de l’uncus (A) et de la queue (B) de l’hippocampe. Coupes coronales. amyg : amygdale ; atr : atrium du ventricule latéral ; cingg : gyrus cingulaire ; cings : sulcus cingulaire ; cl : claustrum ; cn : noyau caudé ; cols : sillon collatéral (T4-T5) ; F1 : gyrus frontal supérieur ; F2 : gyrus frontal moyen ; F3 : gyrus frontal inférieur ; gpl : globus pallidus latéral ; gpm : globus pallidus médial ; Ht : queue de l’hippocampe ; ih : corne inférieure du ventricule latéral ; ins : insula ; intc : capsule interne ; ips : sulcus intrapariétal ; lf : fissure latérale ; lvb : corps du ventricule latéral ; mb : corps mamillaire ; mcp : pédoncule cérébelleux moyen ; mo : medulla oblongata ; or : radiations optiques ; ot : tractus optique ; pcg : gyrus precentral ; pg : glande pinéale ; pocg : gyrus post-central ; pu : putamen ; scol : colliculus supérieur ; smg : gyrus supramarginal ; sts : sulcus temporal supérieur (T1-T2) ; T1 : gyrus temporal supérieur ; T2 : gyrus temporal moyen ; T3 : gyrus temporal inférieur ; T4 : gyrus fusiform ; T5 : gyrus parahippocampique ; thal : thalamus ; tstem : pédoncule ou isthme temporal ; uncs : sillon unciné ; v3 : 3e ventricule ; v4 : 4e ventricule.

Zoom

The lateral wall of the atrium contains the posterior genu of the caudate nucleus tail, and, more laterally the optical radiations.

Vascularization
Hippocampal arteries

The hippocampal arteries mainly arise from the posterior cerebral artery (PCA), and at a lower extend, from the anterior choroïdeal artery.

Along its course at the medial aspect of the uncus, the anterior choroïdeal artery gives an uncal branch that descends at the medial aspect of the cus to reach the uncal sulcus. It also gives perforators to a variable deep territory often including the internal capsule (Fig. 5).

The P1 segment of the PCA runs in the intercrurate cistern, whereas its P2 segment run in the crural cistern (close to the medial aspect of the uncus) and then in the ambient cistern, along the margin of the parahippocampal gyrus. The PCA usually gives rise to 3 groups of hippocampal arteries:

anterior for the head and the uncus. They arise from the main trunk or from collaterals (inferior temporal arteries) of P2 and anastomose to the uncal branch of the anterior choroïdeal artery;
middle for the body and tail. They also arise from P2 main trunk or inferior temporal arteries;
and posterior for the body and tail that come from the splenial artery.

These feeders to the hippocampus then longitudinally connect along the superior aspect of the hippocampal sulcus as a pial network.

Hippocampal veins

The superficial hippocampal veins run at the surface of the hippocampal and fibrio-dentate sulci where they form 2 arches. These arches join at their anterior and posterior extremities. The anterior end reaches the inferior ventricular vein, whereas the posterior one connects to the medial atrial vein. They finally drain into the basilar vein.

Discussion

The anatomy of the hippocampus is relatively complex, but a few rules may help for surgical practice:

the hippocampus is a C-shape structure comprising a head, a body and a tail;
it is made of 2 rolled-up laminae, the cornu Ammonis (CA1 to CA4) and the gyrus dentatus;
the hippocampus has 2 aspects, ventricular and cisternal:
the floor of the inferior horn of the lateral ventricle is mostly occupied by the hippocampus, laterally bordered by the collateral eminence (rostral) and trigone (caudal),
the cisternal aspect of the hippocampus faces the lateral one of the mesencephalon from which it is limited by the transverse fissure;

major changes occur at both ends of the hippocampus:
rostrally, it enlarges to become the hippocampus head. The rostral part of the hippocampus and parahippocampal gyrus (piriform gyrus) curve dorso-caudally to form the uncus,
caudally, the hippocampus tail is thin and splits into 2 elements: the fimbria that ascends and runs ventral to the corpus callosum where it joins the crus of the fornix; and the gyrus fasciolaris that corresponds to the posterior part of the cornu Ammonis that runs ventral to the splenium (subsplenial gyrus) and then dorsal to the corpus callosum where it is known as the indusium griseum.

Part of this complexity comes from the fact that a same structure can have different names, depending of the part of the hippocampus. For instance, the gyrus dentatus appears as the “margo denticulatus” at the body level, as the “medial band of Giacomini” at the medial aspect of the uncus, and as the “fasciola cinerea” at the tail level.

Important hippocampal relationships has to be stressed for a safe surgical practice.

First the dissection should be conduced subpially not to injure the elements contained in the transverse fissure, ambient and quadrigeminal cisterns; as a rule, the pia mater covering the medial surface of the hippocampus has to be preserved and the content of the cisterns should not be dissected. Despite a rich pial vascularization, the hippocampus can be safely removed without any pial coagulation that would certainly induce pial opening and may lead to damages of the elements contained in the underlying cisterns. Instead, cottonoid packing is sufficient to stop most of bleeding.

Second, the choroid plexus mainly covers the hippocampus and has to be gently retracted during the procedure. One should avoid coagulating it, since branches to the optic tract, lateral geniculate body and thalamus may arise from the intraplexual segment of the anterior choroïdeal artery.

Finally, the extend of the temporal lobectomy associated to the hippocampus removal is a matter of debate. The volume of resected tissue varies a lot from a procedure to another one, as damages induced to the surrounding structures (Fig. 8). For instance, limited transsylvian resection [12] was proposed to limit the extent of cortical resection, but is potentially more invasive for branches of the middle cerebral artery and induces a proximal lesion of the temporal stem. Such a lesion may induce visual field abnormalities, since the temporal stem contains the temporal loop of the optic radiations. A limited transcortical approach may be preferred to limit lesions of the temporal stem but is associated to more or less extensive lesion of the temporal neocortex. In the dominant hemisphere, it implies posteriorly limited approaches that may make difficult removal of the tail of the hippocampus. As a rule, during such a transcortical approaches, the axial plane containing the choroid plexus is an important surgical landmark that has to be respected to avoid lesions of structures located above: optical tract, lateral geniculate body, temporal stem.



Fig. 8


Fig. 8. 

Anatomical consequences of temporal lobectomies. Coronal sections. A. Total temporal lobectomy. During this procedure the whole temporal cortex is removed and the temporal stem is sectioned with possible damage to the optic radiations. B. Trans sylvian approach. The temporal neocortex is preserved during the amygdalo hippocampectomy. However this approach implies manipulation of ACM branches, with possible vasospasm, and the temporal stem is sectioned relatively proximal, which may induce lesion of the temporal loop of the optic radiations. C. Trans-STS, and D: trans-T2 approaches: a partial temporal cortectomy is performed in order to preserve the temporal stem. Trans-T2 approach implies a less extended cortical resection.

Conséquences anatomiques des lobectomies temporales. Coupes coronales. A. Lobectomie temporale totale. Cette procédure emporte la totalité du cortex temporal et le pédoncule ou isthme temporal est sectionné ce qui peut induire des lésions des radiations optiques. B. Voie trans-sylvienne. Le néocortex temporal est épargné durant l’amygdalo-hippocampectomie. Néanmoins, cette voie implique la manipulation des branches de l’artère cérébrale moyenne avec un risque de vasospasme. Par ailleurs le pédoncule ou isthme temporal est sectionné proximalement, ce qui peut induire une lésion de la boucle temporale des radiations optiques. C. Voie trans-STS, et D : voie trans-T2 : une cortectomie temporale partielle est réalisée pour préserver le pédoncule ou isthme temporal. L’abord trans-T2 diminue l’étendue de la résection corticale.

Zoom

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

References

Devaux B., Chassoux F., Guenot M., Haegelen C., Bartolomei F., Rougier A., and al. [Epilepsy surgery in France] Neurochirurgie 2008 ;  54 : 453-465 [inter-ref]
Sauvaget F., Jeffredo-Rhanimi S., Velut S., Destrieux C., De Toffol B. [Evaluation of a pathway of epilepsy surgery in a polyvalent video-EEG center: retrospective analysis of a series of 295 patients] Neurochirurgie 2012 ;  58 : 225-229 [inter-ref]
Schramm J., Lehmann T.N., Zentner J., Mueller C.A., Scorzin J., Fimmers R., and al. Randomized controlled trial of 2.5-cm versus 3.5-cm mesial temporal resection in temporal lobe epilepsy-part 1: intent-to-treat analysis Acta Neurochir (Wien) 2011 ;  153 : 209-219 [cross-ref]
Schramm J., Lehmann T.N., Zentner J., Mueller C.A., Scorzin J., Fimmers R., and al. Randomized controlled trial of 2.5-cm versus 3.5-cm mesial temporal resection-part 2: volumetric resection extent and subgroup analyses Acta Neurochir (Wien) 2011 ;  153 : 221-228 [cross-ref]
Duvernoy H.M. The human hippocampus: functional anatomy, vascularization, and serial sections with MRI  Berlin; New York: Springer (2005). 
Nieuwenhuys R., Voogd J., Huijzen C.V. The human central nervous system  Berlin; New York: Springer (2008). 
Larsen W.J. Human embryology  New York: Churchill Livingstone (1993). 
Pansky B. Embryologie humaine  Paris: Marketing (1986). 
Broca P. Sur la circonvolution limbique et la scissure limbique Bull Soc Anthropol Paris 1877 ;  12 : 646-657 [cross-ref]
Ebeling U., von Cramon D. Topography of the uncinate fascicle and adjacent temporal fiber tracts Acta Neurochir 1992 ;  115 : 143-148 [cross-ref]
Peltier J., Verclytte S., Delmaire C., Pruvo J.P., Godefroy O., Le Gars D. Microsurgical anatomy of the temporal stem: clinical relevance and correlations with diffusion tensor imaging fiber tracking J Neurosurg 2010 ;  112 : 1033-1038 [cross-ref]
Wieser H.G., Yasargil M.G. Selective amygdalohippocampectomy as a surgical treatment of mesiobasal limbic epilepsy Surg Neurol 1982 ;  17 : 445-457 [cross-ref]



© 2013  Elsevier Masson SAS. All Rights Reserved.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline