Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    7 0 0 0

Comptes Rendus Mathématique
Volume 352, n° 3
pages 189-195 (mars 2014)
Doi : 10.1016/j.crma.2014.01.001
Received : 9 August 2013 ;  accepted : 6 January 2014
The Ostrovsky–Vakhnenko equation: A Riemann–Hilbert approach
L'équation d'Ostrovsky–Vakhnenko : Une approche de type Riemann–Hilbert

Anne Boutet de Monvel a , Dmitry Shepelsky b
a Institut de mathématiques de Jussieu–PRG, Université Denis-Diderot (Paris-7), case 7012, bât. Sophie-Germain, 75205 Paris cedex 13, France 
b Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 61103 Kharkiv, Ukraine 


We present an inverse scattering transform approach for the (differentiated) Ostrovsky–Vakhnenko equation:
utxx−3ux+3uxuxx+uuxxx=0. This equation can also be viewed as the short-wave model for the Degasperis–Procesi equation. The approach is based on an associated Riemann–Hilbert problem, which allows us to give a representation for the classical (smooth) solution of the Cauchy problem, to get the principal term of its long-time asymptotics, and also to find, in a natural way, loop soliton solutions.

The full text of this article is available in PDF format.

Nous présentons une étude par diffusion inverse de l'équation (différentiée) d'Ostrovsky–Vakhnenko :
utxx−3ux+3uxuxx+uuxxx=0. Cette équation peut aussi se voir comme le modèle « ondes courtes » de l'équation de Degasperis–Procesi. Notre approche consiste à se ramener à l'étude d'un problème de Riemann–Hilbert associé. Elle nous permet d'obtenir une représentation de la solution classique (lisse) du problème de Cauchy et de déterminer le terme principal de l'asymptotique à temps grand de cette solution. Elle permet aussi d'obtenir, de façon naturelle, des solutions solitons de type à boucle.

The full text of this article is available in PDF format.

© 2014  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline