Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    7 0 0 0

Comptes Rendus Mathématique
Volume 352, n° 3
pages 205-211 (mars 2014)
Doi : 10.1016/j.crma.2014.01.006
Received : 5 December 2013 ;  accepted : 16 January 2014
On the Hamiltonian structure of the planar steady water-wave problem with vorticity
Sur la structure hamiltonienne du problème des ondes de surface planes stationnaires avec vorticité

Mark D. Groves a, b , Athanasios Stylianou a
a FR 6.1 - Mathematik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany 
b Department of Mathematical Sciences, Loughborough University, Loughborough, Leics, LE11 3TU, UK 


We consider the stream-function formulation of the hydrodynamic problem for steady rotational water waves both with and without surface tension. A natural Lagrangian formulation is presented from which (different) Hamiltonian formulations for the two cases are derived by duality theory in the spirit of the Legendre–Fenchel transform. The treatment is systematic and clarifies a recent ad hoc approach by Kozlov and Kuznetsov [[7]].

The full text of this article is available in PDF format.

Nous considérons la formulation de la fonction du courant dans le problème hydrodynamique décrivant les ondes de surface rotationnelles stationnaires, avec ou sans tension superficielle. Dans les deux cas, nous présentons une formulation lagrangienne naturelle, à partir de laquelle (différentes) formulations hamiltoniennes sont dérivées à l'aide de la théorie de la dualité, dans l'esprit de la transformée de Legendre–Fenchel. La démarche est systématique et clarifie une approche ad hoc récente de Kozlov et Kuznetsov [[7]].

The full text of this article is available in PDF format.

© 2014  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline