Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0

Comptes Rendus Mathématique
Volume 352, n° 3
pages 241-244 (mars 2014)
Doi : 10.1016/j.crma.2013.12.015
Received : 19 November 2013 ;  accepted : 17 December 2013
The direct image of the relative dualizing sheaf needs not be semiample
L'image directe du faisceau dualisant relatif n'est pas nécessairement semi-ample

Fabrizio Catanese , Michael Dettweiler
 Mathematisches Institut, Universität Bayreuth, 95447 Bayreuth, Germany 


We provide details for the proof of Fujita's second theorem and prove that for a Kähler fibre space   over a smooth projective curve B , the direct image of the relative dualizing sheaf   is the direct sum of an ample and a unitary flat bundle. We also show that V needs not be semiample, which is our main result.

The full text of this article is available in PDF format.

Nous donnons des détails sur la démonstration du second théorème de Fujita et nous montrons que l'image directe du fibré canonique relatif   d'une fibration   sur une courbe B est la somme directe d'un fibré vectoriel ample et d'un fibré vectoriel unitairement plat si l'espace total X est une variété kählérienne compacte. Nous montrons en outre que V n'est en général pas semi-ample, ce qui constitue notre résultat principal.

The full text of this article is available in PDF format.
1  We remark that, while unitary flatness of a bundle implies numerical semipositivity, flatness alone does not, as shown by the following result ([[1]], Thm. 4): Let   be a Kodaira fibration, i.e., X is a surface and all the fibres of f are smooth curves not all isomorphic to each other. Then the direct image sheaf   has strictly positive degree hence   is a flat bundle which is not numerically semipositive .

© 2014  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline