Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 352, n° 11
pages 923-927 (novembre 2014)
Doi : 10.1016/j.crma.2014.09.017
Received : 12 September 2014 ;  accepted : 19 September 2014
Fréchet differentiability of the norm of  -spaces associated with arbitrary von Neumann algebras
Différentiabilité au sens de Fréchet de la norme d'un espace   associé à une algèbre de von Neumann arbitraire

Denis Potapov , Fedor Sukochev , Anna Tomskova , Dmitriy Zanin
 School of Mathematics and Statistics, University of New South Wales, Kensington, NSW, 2052, Australia 


Let   be a von Neumann algebra and let  ,   be Haagerup's  -space on  . We prove that the differentiability properties of   are precisely the same as those of classical (commutative)  -spaces. Our main instruments are multiple operator integrals and singular traces.

The full text of this article is available in PDF format.

Soit   une algèbre de von Neumann et soit  ,   l'espace   de Haagerup sur  . On montre que les propriétés de différentiabilité de   sont exactement les mêmes que celles obtenues sur les espaces   classiques (commutatifs). Les ingrédients principaux sont les opérateurs intégraux multiples et les traces singulières.

The full text of this article is available in PDF format.

© 2014  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline