Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0


Comptes Rendus Mathématique
Volume 352, n° 11
pages 929-933 (novembre 2014)
Doi : 10.1016/j.crma.2014.09.010
Received : 6 August 2013 ;  accepted : 16 September 2014
A Hopf algebra associated with a Lie pair
Une algèbre de Hopf associée à une paire de Lie
 

Zhuo Chen a , Mathieu Stiénon b , Ping Xu b
a Department of Mathematics, Tsinghua University, China 
b Department of Mathematics, Penn State University, United States 

Abstract

The quotient   of a pair   of Lie algebroids is a Lie algebra object in the derived category   of the category   of left  -modules, the Atiyah class   being its Lie bracket. In this note, we describe the universal enveloping algebra of the Lie algebra object   and we prove that it is a Hopf algebra object in  .

The full text of this article is available in PDF format.
Résumé

Le quotient   d'une paire   d'algébroïdes de Lie est un objet algèbre de Lie dans la catégorie dérivée   de la catégorie   des modules à gauche sur  . Dans cette note, nous décrivons l'algèbre enveloppante universelle de l'objet algèbre de Lie   et nous prouvons que celle-ci constitue un objet algèbre de Hopf dans  .

The full text of this article is available in PDF format.

 Research partially supported by NSF grant DMS1101827, NSA grant H98230-12-1-0234, and NSFC grants 11001146 and 11471179.

1  An  -shuffle is a permutation σ of the set   such that   and  .


© 2014  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline