1 Iconography
Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 1 0 0

Comptes Rendus Mathématique
Volume 352, n° 12
pages 971-975 (décembre 2014)
Doi : 10.1016/j.crma.2014.07.009
Received : 18 May 2014 ;  accepted : 7 July 2014
The Arithmetic Site
Le Site arithmétique

Alain Connes a, b, c , Caterina Consani d, 1
a Collège de France, 3, rue d'Ulm, 75005 Paris, France 
b I.H.E.S., France 
c Ohio State University, USA 
d The Johns Hopkins University, Baltimore, MD 21218, USA 


We show that the non-commutative geometric approach to the Riemann zeta function has an algebraic geometric incarnation: the “Arithmetic Site”. This site involves the tropical semiring   viewed as a sheaf on the topos   dual to the multiplicative semigroup of positive integers. We realize the Frobenius correspondences in the square of the “Arithmetic Site”.

The full text of this article is available in PDF format.

Le « Site arithmétique » est l'incarnation en géométrie algébrique de l'espace non commutatif, de nature adélique, qui permet d'obtenir la fonction zêta de Riemann comme fonction de dénombrement de Hasse–Weil. Ce site est construit à partir du semi-anneau tropical   vu comme un faisceau sur le topos   dual du semigroupe multiplicatif des entiers positifs. Nous réalisons les correspondances de Frobenius dans le carré du « Site arithmétique ».

The full text of this article is available in PDF format.

 Both authors thank Ohio State University where this paper was written.

1  Partially supported by the NSF grant DMS 1069218.

© 2014  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline