Received : 6 May 2014 ;
accepted : 10 October 2014
Rudin's submodules of
Sous-modules de Rudin de
B. Krishna Das , Jaydeb Sarkar
Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India
Abstract
Let be a sequence of scalars in the open unit disc of , and let be a sequence of natural numbers satisfying . Then the joint invariant subspace SΦ=⋁n=0∞(z1n∏k=n∞(−α¯k|αk|z2−αk1−α¯kz2)lkH2(D2)), is called a Rudin submodule. In this paper, we analyze the class of Rudin submodules and prove thatdim(SΦ⊖(z1SΦ+z2SΦ))=1+#{n≥0:αn=0}<∞. In particular, this answers a question earlier raised by Douglas and Yang (2000) [[4]].
The full text of this article is available in PDF format.
Résumé
Soit une suite de scalaires du disque unité ouvert de , et soit une suite de nombres naturels vérifiant . Alors le sous-espace invariant SΦ=⋁n=0∞(z1n∏k=n∞(−αk¯|αk|z2−αk1−α¯kz2)lkH2(D2)), est appelé sous-module de Rudin. Dans cette Note, on analyse la classe des sous-modules de Rudin et on démontre quedim(SΦ⊖(z1SΦ+z2SΦ))=1+#{n≥0:αn=0}<∞. En particulier, ce résultat répond à une question posée précédemment par Douglas et Yang (2000) [[4]].
The full text of this article is available in PDF format.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925. As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted. Personal information regarding our website's visitors, including their identity, is confidential. The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline