Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 0 0 0

Comptes Rendus Mathématique
Volume 353, n° 1
pages 69-73 (janvier 2015)
Doi : 10.1016/j.crma.2014.10.012
Received : 19 August 2014 ;  accepted : 16 October 2014
The  -Alexander torsions of 3-manifolds
Torsions d'Alexander   pour les variétés de dimension trois

Jérôme Dubois a , Stefan Friedl b , Wolfgang Lück c
a Université Blaise Pascal – Laboratoire de Mathématiques, UMR 6620 – CNRS, Campus des Cézeaux – B.P. 80026, 63171 Aubière cedex, France 
b Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany 
c Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany 


The aim of this note is to introduce  -Alexander torsions for 3-manifolds (which are generalizations of the usual Alexander polynomial and also of the  -Alexander invariant defined by Li and Zhang [[7]]) and to report on calculations for graph manifolds and fibered 3-manifolds. We further announce that given any irreducible 3-manifold, there exists a coefficient system such that the corresponding  -Alexander torsion detects the Thurston norm. Finally we also state a symmetry formula.

The full text of this article is available in PDF format.

Le but de cette note est d'introduire les torsions d'Alexander   (généralisations du polynôme d'Alexander usuel et de l'invariant d'Alexander   défini par Li et Zhang [[7]]) et d'en donner le calcul pour les variétés graphées et les variétés fibrées de dimension 3. On annonce enfin que les torsions d'Alexander   permettent de détecter la norme de Thurston d'une variété de dimension 3 irréductible et qu'elles sont symétriques.

The full text of this article is available in PDF format.

© 2014  Published by Elsevier Masson SAS de la part de Académie des sciences.
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline