Article

Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    4 0 0 0


Comptes Rendus Mathématique
Volume 353, n° 7
pages 569-572 (juillet 2015)
Doi : 10.1016/j.crma.2015.04.009
Received : 21 January 2015 ;  accepted : 14 April 2015
A polynomial version of Sarnak's conjecture
Une version polynomiale de la conjecture de Sarnak
 

Tanja Eisner
 Institute of Mathematics, University of Leipzig, P.O. Box 100 920, 04009 Leipzig, Germany 

Abstract

Motivated by the variations of Sarnak's conjecture due to El Abdalaoui, Kulaga-Przymus, Lemańczyk, de la Rue and by the observation that the Möbius function is a good weight (with limit zero) for the polynomial pointwise ergodic theorem, we introduce a polynomial version of the Sarnak conjecture for minimal systems.

The full text of this article is available in PDF format.
Résumé

Motivés par les variations de la conjecture de Sarnak établies par El Abdalaoui, Kulaga-Przymus, Lemańczyk et de la Rue ainsi que par l'observation de ce que la fonction de Möbius est un bon poids (avec limite zéro) pour le théorème ergodique polynomial ponctuel, nous introduisons une version polynomiale de la conjecture de Sarnak pour les systèmes minimaux.

The full text of this article is available in PDF format.


© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline
You can move this window by clicking on the headline