Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 353, n° 7
pages 583-588 (juillet 2015)
Doi : 10.1016/j.crma.2015.04.012
Received : 11 December 2014 ;  accepted : 22 April 2015
Almost commuting functions of almost commuting self-adjoint operators
Fonctions presque commutantes d'opérateurs auto-adjoints presque commutants

Aleksei Aleksandrov a, b, Vladimir Peller c
a St.-Petersburg Branch, Steklov Institute of Mathematics, Fontanka 27, 191023 St. Petersburg, Russia 
b Department of Mathematics and Mechanics, Saint Petersburg State University, 28, Universitetski pr., St. Petersburg, 198504, Russia 
c Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA 


Let A and B be almost commuting (i.e,  ) self-adjoint operators. We construct a functional calculus   for φ in the Besov class  . This functional calculus is linear, the operators   and   almost commute for  ,   whenever  , and the Helton–Howe trace formula holds. The main tool is triple operator integrals.

The full text of this article is available in PDF format.

On dit que des opérateurs A et B sont presque commutants si leur commutateur   appartient à la classe trace. Pour des opérateurs A et B auto-adjoints qui presque commutent, nous construisons un calcul fonctionnel  ,  , où   est la classe de Besov. Ce calcul a les propriétés suivantes : il est linéaire, les opérateurs   et   presque commutent pour toutes les fonctions φ et ψ dans  ,   si  , et la formule des traces de Helton et Howe est vraie. L'outil principal est la notion d'intégrales triples opératorielles.

The full text of this article is available in PDF format.

© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline