Article

1 Iconography
Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text
Advertising


Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    5 1 0 0


Comptes Rendus Mathématique
Volume 353, n° 7
pages 641-645 (juillet 2015)
Doi : 10.1016/j.crma.2015.03.019
Received : 15 August 2014 ;  accepted : 30 Mars 2015
A Petrov–Galerkin reduced basis approximation of the Stokes equation in parameterized geometries
Une méthode d'éléments finis de type Petrov–Galerkin pour l'approximation en base réduite du problème de Stokes
 

Assyr Abdulle , Ondrej Budáč
 ANMC, Section de mathématiques, École polytechnique fédérale de Lausanne, Switzerland 

Abstract

We present a Petrov–Galerkin reduced basis (RB) approximation for the parameterized Stokes equation. Our method, which relies on a reduced solution space and a parameter-dependent test space, is shown to be stable (in the sense of Babuška) and algebraically stable (a bound on the condition number of the online system can be established). Compared to other stable RB methods that can also be shown to be algebraically stable, our approach is among those with the smallest online time cost and it has general applicability to linear non-coercive problems without assuming a saddle-point structure.

The full text of this article is available in PDF format.
Résumé

Nous présentons une méthode d'éléments finis de type Petrov–Galerkin pour l'approximation en « bases réduites » du problème de Stokes. La stabilité de notre méthode est établie à l'aide de la théorie inf–sup de Babuška et nous prouvons une borne sur la condition numérique de la matrice du système linéaire « en ligne ». Comparée aux méthodes de type bases réduites existantes, qui sont à la fois stable et dont la condition numérique du système linéaire en ligne peut être controlée, notre méthode a un coût en ligne considerablement plus faible et est applicable à des formulations générales non coercives ne nécessitant pas de structure de type point-selle.

The full text of this article is available in PDF format.


© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Close
Article Outline