Access to the text (HTML) Access to the text (HTML)
PDF Access to the PDF text

Access to the full text of this article requires a subscription.
  • If you are a subscriber, please sign in 'My Account' at the top right of the screen.

  • If you want to subscribe to this journal, see our rates

  • You can purchase this item in Pay Per ViewPay per View - FAQ : 30,00 € Taxes included to order
    Pages Iconography Videos Other
    6 0 0 0

Comptes Rendus Mathématique
Volume 353, n° 8
pages 729-734 (août 2015)
Doi : 10.1016/j.crma.2015.06.002
Received : 11 May 2015 ;  accepted : 3 June 2015
Function spaces on quantum tori
Espaces de fonctions sur les tores quantiques

Xiao Xiong a , Quanhua Xu b, a , Zhi Yin b
a Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon cedex, France 
b School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China 


We study Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori. These spaces share many properties with their classical counterparts. The results announced include: Besov and Sobolev embedding theorems; Littlewood–Paley-type characterizations of Besov and Triebel–Lizorkin spaces; an explicit description of the K-functional of  ; descriptions of completely bounded Fourier multipliers on these spaces.

The full text of this article is available in PDF format.

On considère les espaces de Sobolev, Besov et Triebel–Lizorkin sur un tore quantique   de d générateurs. Les principaux résultats comprennent : le plongement de Besov et Sobolev ; des caractérisations à la Littlewood–Paley pour les espaces de Besov et Triebel–Lizorkin ; une formule explicite de la K-fonctionnelle de   ; l'indépendance en θ des multiplicateurs de Fourier complètement bornés sur ces espaces.

The full text of this article is available in PDF format.

© 2015  Académie des sciences@@#104156@@
EM-CONSULTE.COM is registrered at the CNIL, déclaration n° 1286925.
As per the Law relating to information storage and personal integrity, you have the right to oppose (art 26 of that law), access (art 34 of that law) and rectify (art 36 of that law) your personal data. You may thus request that your data, should it be inaccurate, incomplete, unclear, outdated, not be used or stored, be corrected, clarified, updated or deleted.
Personal information regarding our website's visitors, including their identity, is confidential.
The owners of this website hereby guarantee to respect the legal confidentiality conditions, applicable in France, and not to disclose this data to third parties.
Article Outline
You can move this window by clicking on the headline