Endoscopic management of post-laparoscopic cholecystectomy biliary strictures

Long-term outcome in a multicenter study

Carmen KASSAB (1), Frédéric PRAT (2), Claude LIGUORY (3), Bruno MEDURI (4), Béatrice DUCOT (5), Jacques FRITSCH (1), André Daniel CHOURY (1), Gilles PELLETIER (1)

(1) Service d'Hépato-Gastroentérologie, CHU Bicêtre; (2) Service d'Hépato-Gastroentérologie, Hôpital Cochin; (3) Clinique de l'Alma; (4) Clinique Bachaumont, Paris; (5) Inserm U292, CHU Bicêtre.

SUMMARY

Objectives — The aim of this retrospective study was to assess the long term results of long-lasting endoscopic stenting for benign biliary strictures related to laparoscopic cholecystectomy. Additional biological and morphological data were collected from these patients during follow-up.

Methods — Patients undergoing ERCP for post-laparoscopic cholecystectomy biliary stricture in one of the three participating centers between 1990 and December 2001 were identified. Only patients with successful endoscopic stenting were subsequently included and analyzed. Follow-up data were obtained from referring centers, general practitioners and patients or relatives. Hepatic blood tests and abdominal ultrasound were proposed to all the patients who had not undergone further treatments after stent removal.

Results — Eight-eight patients had undergone ERCP for benign biliary stricture related to laparoscopic cholecystectomy. Stenting failed in 19 patients. Balloon dilatation alone was used in four patients. Strictures were successfully stented in 65 patients. The mean number of stents inserted at the same time was 1.6. The mean duration of stenting was 14 months (range 1-120 months). Eighteen patients (28%) developed biliary or pancreatic symptoms during stenting. ERCP was considered satisfactory at the end of stenting (i.e. no remaining stricture or minor remaining change on ERCP) in 45 patients (69%). Twenty-two patients were lost to follow-up. Twenty-nine out of forty-three patients (67%) remained symptom-free with normal updated blood tests and abdominal ultrasound during a mean follow-up of 28 months (range 12-117 months) after stent removal. None of the patients with a normal ERCP at the end of stenting developed stricture recurrence during follow-up. Eleven patients were operated (8 with persistence of stricture, 2 for stricture recurrence up to 63 months after stent removal, 1 for pancreatitis).

Conclusion — Based on clinical, morphological and biological criteria, a long-term success was obtained in 70% of patients with post-laparoscopic cholecystectomy benign biliary strictures, after several months of endoscopic stenting.

RÉSUMÉ

Traitement endoscopique des sténoses biliaires bénignes après cholecystectomie laparoscopique : résultats à long terme d’une étude multicentrique

Carmen KASSAB, Frédéric PRAT, Claude LIGUORY, Bruno MEDURI, Béatrice DUCOT, Jacques FRITSCH, André Daniel CHOURY, Gilles PELLETIER

(Gastroenterol Clin Biol 2006;30:124-129)

Objectifs — Le but de cette étude rétrospective était d’évaluer les résultats à long terme du calibrage de longue durée des sténoses biliaires post-cholecystectomie par prothèse mise en place par voie endoscopique. Nous avons de plus recherché des données biologiques et morphologiques actuelles de ces malades.

Méthodes — Les malades ayant eu une cholangiographie rétrograde pour sténose biliaire post-cholecystectomie dans l’un des 3 centres entre 1990 et décembre 2001 ont été identifiés. Seuls les malades traités avec succès par endoprothèse ont ensuite été analysés. Les données du suivi ont été obtenues auprès des correspondants, des médecins traitants et des familles. La réalisation d’une échographie abdominale et de tests hépatiques a été proposée à tous les malades qui n’avaient pas eu d’autre traitement au cours du suivi.

Résultats — Quatre-vingt-huit malades ont eu une cholangiographie rétrograde pour sténose biliaire post-cholecystectomie. L’insertion d’une prothèse a échoué chez dix-neuf malades ; quatre malades ont eu une dilatation endoscopique seule. Soixante cinq malades ont été traités par la mise en place d’une prothèse. Le nombre moyen de prothèses par séance était de 1,6. La durée moyenne du traitement endoscopique était de quatorze mois (extrêmes : 1 à 120 mois). Dix-huit malades (28 %) ont eu des manifestations biliaires ou pancréatiques au cours du traitement. Le calibrage était jugé satisfaisant à la fin du traitement endoscopique (c’est-à-dire absence de sténose résiduelle ou anomalie résiduelle minime) chez quarante-cinq malades (69 %). Vingt-deux malades ont été perdus de vue. Vingt-neuf malades sur quarante-trois (67 %) sont restés asymptomatiques avec un bilan hépatique et une échographie normaux avec un suivi de 28 mois après l’ablation de prothèse (extrêmes : 12 à 117 mois). Aucun malade ayant une voie biliaire principale normale à la fin du traitement endoscopique n’a récidivé. Onze malades ont été opérés (8 sténoses persistantes, 2 récidives de sténose à 63 mois du traitement endoscopique et 1 pancréatite).

Conclusion — Un succès défini sur une base clinique, biologique et morphologique pouvait être obtenu après un calibrage de plusieurs mois dans près de 70 % des cas de sténose biliaire bénigne post-cholecystectomie.
trauma [1, 2, 4]. Sometimes associated with loss of tissue from the extrahepatic ductal walls, these post-cholecystectomy strictures are prone to fistulization. The biliary injury may be recognized intraoperatively or become apparent postoperatively. The most frequent symptoms are jaundice, fever, and abdominal pain. Late symptoms include cholestasis, recurrent cholangitis, ductal stones, or secondary biliary cirrhosis.

Reconstructive surgery is usually undertaken for the treatment of postoperative biliary strictures, usually with a hepaticojejunostomy [6-8].

More recently, endoscopic management has been proposed for benign strictures. The endoscopic method consists in balloon dilatation associated or not with insertion of one or more stents to calibrate the zone of stricture [9-11]. Most of the published studies on endoscopic treatment have included small numbers of patients with short- or mid-term follow-up. The long-term efficacy of stenting remains to be described in detail although certain authors have reported very encouraging results obtained in referral centers. Certain authors recommend a one-year stenting protocol, changing stents every three months [11-21].

The purpose of this work was to evaluate the long-term effects of endoscopic stenting for post-laparoscopic cholecystectomy benign biliary stenosis in three referral centers in the Paris area. In addition to a retrospective analysis of outcome, we recorded biological and morphological data in patients whose biliary stricture was managed exclusively by endoscopic means.

Patients and methods

Inclusion criteria

Patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) for post-laparoscopic cholecystectomy benign biliary stricture were included in this retrospective analysis. The inclusion period ran from 1990 through December 2001 in order to have a follow-up period of at least twelve months after surgical treatment.

Exclusion criteria

Presence of malignant stricture, post-sphincterectomy stricture, simple biliary leakage without stenosis, Mirizzi syndrome, stenosis of a biliary-digestive anastomosis, extrinsic compression secondary to calcifying pancreatitis, primary sclerosing cholangitis, bile duct stone, and post-transplantation stricture were exclusion criteria. Patients whose stent was inserted percutaneously were also excluded from the analysis.

Definitions of successful and unsuccessful treatment

Successful endoscopic treatment was defined as the absence of radiologically detectable stenosis in a symptom-free patient with normal or nearly normal liver tests (gamma-glutamyl-transpeptidase and/or alkaline phosphatase less than twice the upper limit of normal [ULN]). Persistence of an abnormal duct caliber on the ERCP was not considered a failure if normal drainage of the intrahepatic ducts was visualized.

Long-term success was defined as the absence of biliary symptoms in a patient with a normal abdominal ultrasound and normal or nearly normal liver tests (gamma-glutamyl-transpeptidase and/or alkaline phosphatase less than twice ULN) at last follow-up.

Therapeutic failure was defined as the presence of altered hepatic function (cholestatic > 2 ULN) or the presence of biliary symptoms requiring surgical revision.

Data collection

Data were collected in three phases:
1. at stent insertion
2. during long-standing stenting for duct calibration
3. after stent removal.

Data on stent insertion, replacement and removal were collected from the ERCP reports in the patient’s medical files.
— erroneous guidewire trajectory, (N = 1 patient),
— obstructive lithiasis associated with ductal stricture and failure of endoscopic extraction, (N = 1 patient),
— exclusive passage of guidewire into a large fistula associated with the stricture, (N = 1 patient),
— unsuccessful passage through a well defined stenotic zone, (N = 1 patient).

Modalities of endoscopic treatment (table II)

A biliary stent was inserted in 65 patients (94%): treatment was exclusively endoscopic in 53 of them (82%) and associated with fluoroscopy-guided percutaneous treatment in 12 (18%). Stenting was performed with dilatation in 55 patients (85%) and without in 10 (15%). On average, 1.6 stents were inserted per ERCP session (range 1-4).

On average, stents were changed 3.4 ± 2.8 times during the endoscopic treatment (1-15 ERCP procedures per patient). Mean duration of the endoscopic treatment was 14 ± 12.5 months (range 1-120 months).

Short-term outcome (figure 1)

Early complications were observed in 18 patients (28%): stent migration in 8 patients, acute pancreatitis in 7, digestive perforation in one, bleeding in one, and cholangitis in one. All of these complications resolved with medical treatment with no mortality. Ten patients (15.5%) were lost to follow-up during the course of treatment. Short-term outcome was thus evaluated in 55 patients. At the end of endoscopic treatment, the common bile duct was considered normal in 27 patients. A slightly abnormal morphology of the common duct persisted in 18 patients with no impact on bile drainage. Overt stricture persisted in 10 patients (15.5%). Thus, at the end of the endoscopic treatment, outcome was thus considered satisfactory in 45 patients.

Long-term outcome (figure 2)

Among the 10 patients with persistent stricture, eight underwent surgery, one was lost to follow-up, and one did not undergo surgery despite altered liver function.

Among the 45 patients with a partially or totally satisfactory ductal morphology at stent removal, five were lost to follow-up and six died from an unrelated cause: colonic cancer (N = 2), gastric cancer (N = 1), cardiovascular disease (N = 1), unknown cause (N = 2). Complementary explorations (abdominal ultrasound and liver tests) were performed in 31 patients who were followed on average 28 ± 15 months (range 12-117 months) after the end of the endoscopic treatment. The abdominal ultrasound and liver tests were normal in 29/31 patients. Thus, among 49 patients followed on average 28 months or until death, the long-term outcome after endoscopic treatment was successful in 35 (72%) and unsuccessful in 14 (28%).

Surgical revision (table III)

Besides the eight patients who underwent surgery because of persistent stenosis, three other patients had revision surgery despite the partial success of the ERCP. These patients were the two with recurrent biliary stricture and a third one whose revision procedure was an empiric precautionary decision. The rate of recurrent stricture after successful ERCP was thus 4.5% (2/45 patients). The revision procedure was performed on average 23 months after the end of stenting in 11/12 patients (immediately after ERCP in one). For the two patients who developed recurrent strictures, surgical treatment was performed on average 63 months after the end of stenting. The first patient only presented a minimal lateral defect on the left aspect of the common duct but developed cholangitis. The second pre-
Endoscopic management of post-cholecystectomy strictures

sented ductal dilatation upstream from a zone of moderate ste-
nosis.

Factors predictive of success

There was no significant difference in the success rate regarding the three participating centers, patient age or gender, localization of the stricture, presence or not of a fistula, and time between cholecystectomy and ERCP. The probability of success was not affected by the number of stents used nor the duration of the stenting or follow-up. At multivariate analysis, the only factor significantly associated with long-term success was a normal morphological aspect of the common bile duct at the end of the endoscopic treatment.

Discussion

In this series, endoscopic management of post-operative biliary stricture was feasible in 78% of patients. Defined morphologically, successful treatment could be achieved in about 70% of patients after several months of stenting. The risk of recurrence later was low. The factor best predicting long-term success was a normal cholangiogram at the end of the endoscopic treatment.

Surgery has been the mainstay treatment for traumatic injury of the bile ducts. In experienced hands, surgery can provide good long-term outcome, but morbidity is about 25% and mortality 4-13% [4, 22-25]. Long-term success ranges from 70-91%. Nevertheless, 12-45% of patients develop recurrent stricture of the biliobiliary anastomosis leading to necessary revision in 18 to 35% of patients [22-26]. In one study, restenosis was observed in 18% of patients after primary repair of the biliary tree and in 26% after secondary repair [7].

Other options have been proposed. Besides interesting results obtained with percutaneous techniques [27], endoscopic management is preferred by many teams because it provides a non-invasive solution to an iatrogenic problem. There were 65 stented patients in the present series, one of the largest in the literature. The failure rate was 22%, comparable with the series reported by Bergmann et al. [17] but better than the series reported by Costamagna et al [15]. The complication rate during stenting was 28%. This information is rarely mentioned. Stent migration is the most frequent complication during treatment. Only one patient in our series developed cholangitis after stent obstruction. The initial success rate (normal cholangiography or minimal change in the morphology of the common duct) was 69% in our series. This is somewhat lower than in earlier reports [13, 15, 17] but ten patients were lost to follow-up at the end of the endoscopic treatment. The duration of stenting (14 months on average) and the failure rate (33%) were comparable with data in the literature [15, 17].

The prospective follow-up of our patients enabled collection of original data on liver function and biliary morphology. For 45 patients with a mean follow-up of 28 months, the long-term success rate was 67%. Only two patients (4%) developed secondary biliary stricture more than five years after treatment.

Table II. – Number of stents per ERCP session.

<table>
<thead>
<tr>
<th>Number of stents</th>
<th>Patients N = 65 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27 (41,5)</td>
</tr>
<tr>
<td>2</td>
<td>27 (41,5)</td>
</tr>
<tr>
<td>3</td>
<td>8 (12)</td>
</tr>
<tr>
<td>4</td>
<td>3 (5)</td>
</tr>
</tbody>
</table>

Fig. 2 – Distribution of stented patients (n = 65).

Distribution des malades traités par prothèses (n = 65).
Table III. – Details of patients operated after failure of endoscopic therapy.

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Time to surgery after failure of ERCP</th>
<th>Causes of failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 and 36 months</td>
<td>anastomotic stricture</td>
</tr>
<tr>
<td>4</td>
<td>4 months, 12 months (N = 2) and 15 months</td>
<td>tight stricture of common duct</td>
</tr>
<tr>
<td>1</td>
<td>18 months</td>
<td>stricture with stones</td>
</tr>
<tr>
<td>2</td>
<td>immediate, 9 months</td>
<td>Moderate stenosis</td>
</tr>
<tr>
<td>1</td>
<td>4 months</td>
<td>Infection + pancreatitis</td>
</tr>
<tr>
<td>1</td>
<td>117 months</td>
<td>Left lateral extrinsic compression of the common duct</td>
</tr>
</tbody>
</table>

was considered successful. For Bergmann et al [17] 9 of 44 patients (20%) with a longer follow-up (2-180 months) developed secondary strictures, but all occurred within the first two years after stent removal. Dumonceau et al [14] observed a 19% re-stenosis rate with a 44-month mean follow-up. The outcome after failure of endoscopic treatment remains unknown and cannot be predicted from our data or from earlier reports. These patients would have to be followed specifically to determine whether late surgical repair after failure of instrumental calibration yields a rate of failure different than after first-intent surgical repair.

There is some controversy concerning the most appropriate way of implementing endoscopic treatment. There is no consensus on the best strategy (dilatation versus stenting), the number of stents to use, or the duration of stenting. Certain authors recommend stenting for three months, others for 12 to 24 months. A variable number of stents have been used, sometimes two but up to three or four [11-21]. Dumonceau et al [14] successfully inserted stents in 47/48 (98%) patients with incomplete stenosis. Davids et al [16] inserted one to four 10 F stents in 94% of patients in their series to reach a 10 to 12 mm diameter. These authors obtained good responses in 74-90% of patients followed for six months to ten years. Like these different reports, our retrospective, multicentric study cannot be used to validate an optimal treatment protocol. There is however agreement on the importance of long-standing stenting and for the need for preventive replacement of stents during the treatment period. In the future, extractable metal stents might enable a different approach.

A high-quality prospective randomized study comparing surgical with endoscopic treatment of post-operative biliary strictures is lacking. There have however been two non-controlled studies of historical series which have provided very similar results with two different methodologies. The long-term success rate was 80% after endoscopic treatment and 77% after surgical treatment in the report by Tocchi et al [28] and 83% for both methods in the report by Davids et al [29].

We wanted to know whether we could find any factors predictive of success or failure of endoscopic treatment, but the sample size was too small to distinguish the impact of each variable on disease-, technique-, or stricture-related prognostic factors. In particular, we were unable to identify a subgroup of patients with a better probability of successful endoscopic treatment because of the mechanism of their biliary injury. The causal mechanism of injury and stricture, often combining the effects of ischemia and more or less inflammatory scar formation, is generally undetermined. The only factor predictive of long-term success was the nearly normal morphology of the common biliary duct after endoscopic treatment. Larger series would be needed to demonstrate the impact of morphological criteria on prognosis and to search for factors related to the endoscopic technique.

In conclusion, successful endoscopic management of post-laparoscopic cholecystectomy biliary stricture, defined clinically, biologically and morphologically, can be achieved in nearly 70% of patients after several months of stenting. This success rate compares favorably with that obtained after surgical repair, warranting a first-intention attempt with ERCP before resorting to surgery. However, because of the lack of a factor predictive of long-term outcome which can be identified before making the therapeutic choice, and the uncertainty concerning the outcome of surgical repair after failure of endoscopic treatment, opting for one or other method should be a collegial decision.

REFERENCES

