In the global process of rehabilitation of the amputee, the installation of an adapted orthopedic prosthesis constitutes the main objective of PRM departments. Satisfaction of the patient of the prosthesis is determining in its use and participate in the quality of life of the patient [1].

Objective To estimate the satisfaction of patients with orthopedic prosthesis made in the orthopedic center of the CNHU-HKM (OC/CNHU-HKM) of Cotonou, from 2006 till 2011.

Method Cross-sectional study with descriptive and analytical aim which consisted in seeing again between September, December and January, 2013 47 subjects according to the criteria of inclusion and exclusion well defined on 137 patients with prosthesis from OC/CNHU-HKM, between 2006 and 2011, that is 6 years. Their level of satisfaction towards the prosthesis and their quality of life according to the London Handicap Scale were the studied dependent variables.

Results The subjects were 39,7 years old on average and for the greater part men (85.1%). Prostheses were exoskeletal (59.6%) and endoskeletal (40.4%). For the majority (57.5%), the price of the prosthesis was high, but 63.8% were satisfied with it. The quality of life was good for 14.9%. The level of global satisfaction of the patients was influenced by their level of satisfaction in gait, by the solidity of the prosthesis, by the facility to use the prosthesis in daily and professional activities. There was no correlation between the level of satisfaction of the patient towards the prosthesis and his quality of life ($P = 0.24$).

Discussion/conclusion The satisfaction of the patients of their prosthesis is major for the good use of the device. For that purpose, it is necessary to reconcile the functional, esthetic financial requirements of the patient in the realization of the prosthesis.

Keywords Satisfaction; Prosthesis; Orthopaedic center

Disclosure of interest The authors declare that they have no conflicts of interest concerning this article.

http://dx.doi.org/10.1016/j.rehab.2015.07.045

CO04-005-e

Severe congenital scoliosis: What possibilities for seating installation and mobility?

M. Porte (Dr) a,b, G. Toutain b,a, B. Huguet b, K. Patte (Dr) b

a CHU Caremeau, Nîmes cedex 9, France
b Institut Saint-Pierre, France

*Corresponding author.

E-mail address: toutain.g@institut-t-erre.fr (G. Toutain)

Introduction We call congenital scoliosis a spinal curve which may be present before age of 3 [1]. Some resolve spontaneously while others can severely progress, but the literature do not report data about their prevalence. Its impact is multiple: the curve can induce an oblique pelvis, an alteration of respiratory function, some nutritional troubles or pain. All those can impair, daily the possibilities of prone or sitting positions, or capacities of mobility. And those problems, as we know, have not being studied in publications up to now.

Objective From 5 situations, we will approach the complaints of children and teenagers with severe congenital scoliosis, about their sitting installation with discomfort, their mobility or participation limitations. In each case, we will also report some possible difficulties for the adaptation of compensation devices.

Discussion/conclusion Young patients with severe scoliosis can suffer daily of bad installation, painful and impossible to sustain during hours. They can need devices to support their mobility (scooter, wheelchair). Those problems are not enough evaluated and taken into account while they can impact patient’s quality of life. Attribution of devices for compensation is not a simple course, from the evaluation to the technical realization (custom-made most generally) with sometimes even legal difficulties.

Keywords Congenital scoliosis; Children; Wheelchair; Mobility

Disclosure of interest The authors declare that they have no conflicts of interest concerning this article.
Introduction

The osseointegration improves the quality of life for amputees and brings indolence [1]. Unlike a socket, the abutment concentrates stresses. The tall and heavy patients have to face break of abutment. Abutment’s stresses on the abutment in order to reduce the mechanical strain on the abutment and the need to solve multiple problems. We will discuss about vascular question, risk of infection, skin appearance, bone, tendon, neurological, and psychological component, some objectives having to take in consideration different factors involved in the recovery.

Discussion

The replantation of a hand in a 63-year-old patient requires specialized care, long and difficult labor with an uncertain future for reinnervation. On the other side, the myoelectric prosthesis allows to the patient a rapid return to social life. The third case was possible by a long length of the residual femur’s bone.

Results

For a patient whose weight is 80 kg and the size 1.88 m, the values [1,2] of the torque at the junction abutment–implant are:

Case 1: 20.8 Nm
Case 2: 31.68 Nm
Case 3: 2.24 Nm.

We find between the case 1 and case 3:
– a sharp reduction of flows all around the abutment;
– a better amputation;
– reduces strain and increases the life of the abutment for all patients;
– decreases patient’s anxiety.

Keywords Osseointegration; Reduction of mechanical strain; Titanium OPRA

Disclosure of interest The authors declare that they have no conflicts of interest concerning this article.

References

http://dx.doi.org/10.1016/j.rehab.2015.07.049

P014-e

Assessment of the quality of life of lower-limb amputees with orthosis

M. Rekik (Dr)a, A. Haj Salah (Dr)b, M. Sghir (Dr)b, I. Ksibi (Dr)b, W. Saïd (Dr)b, W. Kessomtini (Prof)b,*,

a CHU Taher Sfar Mahdia, Mahdia, Tunisia
b Hôpital Militaire Principal d’Instruction de Tunis, Tunisia
*Corresponding author.
E-mail address: kwassia@yahoo.fr (W. Kessomtini)

Objective The aim of this work is to analyze the becoming and the quality of life (QOL) of implanted patients following a major lower extremity amputation.

Material and methods We conducted a cross-sectional study including 17 patients fitted after major lower extremity amputation. We assessed their QOL using the “Nottingham health profile” (NHP) with 6 items: mobility, emotional reactions, energy, social isolation, sleep, pain) and the analogue scale VAS of QOL graduated from 0 to 100 mm. In a second time, we studied the correlation between QOL and age, sex, comorbidity, level of amputation, and evolution.

Results It was about 17 patients, including 12 men and 5 women with a mean age 53 years. Fifteen patients had a lot of comorbidities. The amputation had been operated from 0 to 100 mm. In a second time, we studied the correlation between QOL and age, sex, comorbidity, level of amputation, and evolution. We presented the case of a 63-year-old patient with a complete traumatic radio carpal amputation. His amputated hand was successfully replanted in emergency on December 8, 2014; we will detail the issues in post-operative rehabilitation treatment and the need to solve multiple problems. We will discuss about vascular question, risk of infection, skin appearance, bone, tendon, neurological, and psychological component, some objectives having to take in consideration different factors involved in the recovery.

Discussion The replantation of a hand in a 63-year-old patient requires specialized care, long and difficult labor with an uncertain future for reinnervation. On the other side, the myoelectric prosthesis allows to the patient a rapid return to social life. The third case was possible by a long length of the residual femur’s bone.

Results For a patient whose weight is 80 kg and the size 1.88 m, the values [1,2] of the torque at the junction abutment–implant are:

Case 1: 20.8 Nm
Case 2: 31.68 Nm
Case 3: 2.24 Nm.

We find between the case 1 and case 3:
– a sharp reduction of flows all around the abutment;
– a better amputation;
– reduces strain and increases the life of the abutment for all patients;
– decreases patient’s anxiety.

Keywords Osseointegration; Reduction of mechanical strain; Titanium OPRA

Disclosure of interest The authors declare that they have no conflicts of interest concerning this article.

References

http://dx.doi.org/10.1016/j.rehab.2015.07.049