Thoracic aortic aneurysms and pregnancy

Capucine Coulon

Summary

Half of acute aortic dissection in women under the age of 40 occurs during pregnancy or peripartum period. Marfan syndrome is the most common syndromic presentation of ascending aortic aneurysm, but other syndromes such as vascular Ehlers-Danlos syndrome, Loeys-Dietz syndrome and Turner syndrome also have ascending aortic aneurysms and the associated cardiovascular risk of aortic dissection and rupture. Management of aortic root aneurysm has been established in recent recommendations, even if levels of evidence are weak. Pregnancy and postpartum period should be followed very closely and determined to be at high risk. Guidelines suggest that women with aortopathy should be counseled against the risk of pregnancy and about the heritable nature of the disease prior to pregnancy.

Résumé

Anévrismes de l’aorte thoracique et grossesse

Cinquante pour cent des dissections de l’aorte observées chez la femme de moins de 40 ans surviennent pendant la grossesse ou la période du post-partum. Le syndrome de Marfan constitue la pathologie syndromique la plus souvent responsable d’un anévrisme de l’aorte ascendante, mais d’autres maladies (syndrome d’Ehlers-Danlos vasculaire, syndrome de Loeys-Dietz, syndrome de Turner) peuvent également se compliquer d’un anévrisme de l’aorte thoracique et/ou de dissection ou rupture de l’aorte. La surveillance d’un anévrisme de l’aorte est relativement bien établie selon des recommandations récentes, même si leurs niveaux de preuves sont faibles. La grossesse et le post-partum sont des périodes à haut risque et doivent bénéficier d’une surveillance attentive. Les recommandations suggèrent que les patientes présentant une aortopathie soient informées du caractère à haut risque de la grossesse. La consultation préconceptionnelle doit également insister sur le risque de transmission génétique de la pathologie à leur descendance.
Methodology

Introduction
Cardiovascular disease complicates approximately 1–3% of pregnancies and is the second commonest cause of maternal mortality for 10 to 15% [1–3]. Nearly half of maternal deaths secondary to cardiovascular diseases are caused by aortic dissection [4]. Recent recommendations classified risk of heart diseases during pregnancy in 4 stages (World Health Organization modified classification) [5,6].

Aorta aneurysm is a permanent localized dilatation of aorta, having at least a 50% increase of diameter compared with the expected normal diameter of the aorta. Thoracic aortic root diameter is measured at the sinuses of Valsalva, and has been evaluated with computed tomographic imaging. Normal values are about 35 to 37.2 mm, SD 3.8 for women [7].

Management of aortic root aneurysm has been established in recent recommendations, even if levels of evidence are weak (table I). Pregnancy and postpartum period should be followed very closely and determined to be at high risk. Marfan syndrome is the most common syndromic presentation of ascending aortic aneurysm, but other syndromes such as vascular Ehlers-Danlos syndrome, Loeys-Dietz syndrome and Turner syndrome also have ascending aortic aneurysms and the associated cardiovascular risk of aortic dissection and rupture. Ascending aortic aneurysm can also occur in the absence of associated systemic findings of a connective tissue abnormality in patients with familial aortic aneurysm and dissection or bicuspid aortic valve.

Pregnancy is an important consideration in the management of women with TAA disease. Multidisciplinary team, with obstetrics, cardiovascular surgeon, anaesthetists, and cardiologist should discuss with the woman, about birth control methods and the risk of aortic dissection before conception in women at risk. It is extremely difficult to estimate the individual risk of aortic dissection, and the information is principally extracted from series of women with Marfan syndrome [8].

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women with Marfan syndrome or other known aortic disease should be counseled about the risk of aortic dissection during pregnancy and the recurrence risk for the offspring</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Imaging of the entire aorta (CT/MRI) should be performed before pregnancy in patients with Marfan syndrome or other known aortic disease</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Women with Marfan syndrome and an ascending aorta > 45 mm should be treated surgically pre-pregnancy</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In pregnant women with known aortic dilatation, (history of) type B dissection or genetic predisposition for dissection strict blood pressure control is recommended</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Repeated echocardiographic imaging every 4-8 weeks should be performed during pregnancy in patients with ascending aorta dilatation</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In patients with an ascending aorta < 40 mm, vaginal delivery is favoured</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>In patients with an ascending aorta > 45 mm, caesarean delivery should be considered</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Women with aortic dilatation or (history of) aortic dissection should deliver in a center where cardiothoracic surgery is available</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Surgical treatment pre-pregnancy should be considered in women with aortic disease associated with a bicuspid aortic valve when the aortic diameter is > 50 mm (or > 27 mm/m² body surface area)</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Prophylactic surgery should be considered during pregnancy if the aortic diameter is ≥ 50 mm and increasing rapidly</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>In Marfan syndrome, and other patients with an aorta ≥ 40-45 mm, vaginal delivery with epidural anaesthesia and expedited second stage should be considered</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>In Marfan syndrome, and other patients with an aorta ≥ 40-45 mm, caesarean section may be considered</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>Patients with (or history of) type B dissection should be advised against pregnancy</td>
<td>III</td>
<td>C</td>
</tr>
</tbody>
</table>
Thoracic aortic aneurysms and pregnancy

We are reporting in this review the principal causes of thoracic aortic aneurysm in pregnant women, and their management during pregnancy and postpartum period.

Cardiovascular diseases

Marfan syndrome

Marfan syndrome is due to mutations in the *FBN1* gene and leads to manifestations including skeletal and connective tissues features (such as tall stature, kyphoscoliosis, elongated fingers and toes, pectus deformities, hyperelaxity, dural ectasia), ocular pathology (high myopia, ectopia lentis, lens dislocation), and cardiovascular disease (aortic root aneurysm, aortic dissection, primarily mitral valve prolapse and regurgitation) which criteria for his diagnosis have been revised recently (Ghent nosology), [9,10] to facilitate accurate of diagnosis of this genetic aneurysm syndrome and to improve patient management and counseling.

Most patients with Marfan syndrome present a dilatation of the aortic root/ascending aorta or type A dissection. This is very important to relate this measurement to normal values based on age and body surface area [11]. After diagnosis, follow-up imaging studies are recommended at 6 months and then annually if stability is documented [12].

In Marfan syndrome, we consider that thoracic aortic aneurysm exists when aortic diameter is larger than 40 mm, measured on the Valsalva sinuses.

Vascular Ehlers-Danlos syndrome

Vascular Ehlers-Danlos syndrome is a rare genetic disease transmitted as an autosomal dominant trait. This is characterised by a deficiency of synthesis, secretion and structure of procollagen type III affecting the entire arterial tree, together with the skin and the intestine. The disease results from heterozygous mutations in the *COL3A1* gene, causing structural defect in the pro1 (III) chain of collagen type III. It is distinguished from other forms of Ehlers-Danlos syndrome by its unstable acrogeric mor-photype and by vascular, gastrointestinal and obstetrical complications. Clinically, it is characterised by four major and nine minor diagnostic criteria [13]. The combination of two major diagnostic criteria has a high specificity, but further biochemical testing and mutational analysis of *COL3A1* gene is recommended to formally confirm the diagnosis, which provides diagnosis certainty but has a sensitivity of only 61% [14].

Turner syndrome

Turner syndrome is also associated with aortic disease. The prevalence of cardiovascular abnormalities is about 25-50% in Turner syndrome. The risk of an aortic dissection is probably higher in women with additional risk factors such as bicuspid aortic valve or coarctation of the aorta, and/or hypertension. Those with aortic dilatation are at highest risk of dissection, but dissection may also occur in the absence of any dilatation. Thoracic aortic diameters must be evaluated in relation to body surface area as these patients often have short stature. An aortic index > 27 mm/m² is associated with a high risk of dissection, and prophylactic surgery should be considered. Aortic dissection during pregnancy is associated with maternal mortality of 2% [15-17].

In Turner syndrome, aorta is considered dilated with a majored risk of dissection when her diameter is larger than 35 mm, or larger than 27 mm/m² in small maternal height.

Loeys-Dietz syndrome

Loeys-Dietz syndrome is a recently described autosomal dominant aortic aneurysm syndrome with involvement of many other systems [18,19]. It is due to mutations in transforming growth factor beta receptor type I or II (TGFBR1 and TGFBR2) genes [20] and has a characteristic triad of craniofacial features (craniosynostosis, bifid uvula or cleft palate, hypertelorism), aortic root and branch vessel aneurysm and dissection, and arterial tortuosity of the head and neck vessels but can occur in other vessels [19]. The vascular disease in these patients is particularly aggressive with a strong predisposition for aneurysms and dissections throughout the arterial tree (mean age of death of 26 years) [20] and a high incidence of pregnancy-related complications [19]. Most patients have aortic root aneurysms (98%) that lead to aortic dissection. Repair is recommended for smaller diameters of aorta because of many reports of aortic dissection occurring when the aortic diameter was less than 50 mm [19]. Major complications are described during pregnancy or postpartum period [19].

Bicuspid aortic valve

The partial or complete fusion of aortic valve commissures (bicuspid aortic valve) represents the most common form of congenital heart disease and affects approximately 1% of the population. It may be familial in approximately 9% of cases. A subset of individuals and families with BAV disease has associated ascending aortic aneurysm [21]. Abnormal elastic properties, similar to the findings in patients with Marfan syndrome, have been described [22-25], but it has not been confirmed by prospective studies.

Bicuspid aortic valve is known to coexist with other congenital vascular defects; the most common of which is coarctation of the aorta. Of patients with coarctation, approximately 25 to 50% have bicuspid aortic valve [26]. Approximately 50% of the patients with a bicuspid aortic valve and aortic stenosis have dilatation of the ascending aorta [27]. Dilatation is often maximal in the distal part of the ascending aorta, which cannot be adequately visualized echocardiographically, MRI or CT should be performed pre-pregnancy.

Dissection does occur, although less frequently than in Marfan patients [28].

Aortic root dilatation has been documented in childhood, suggesting that this process begins early in life [29-31]. Guidelines suggest that women with bicuspid aortic valve and significant aortopathy (aortic root dilatation > 45 mm) should be counseled against the risk of pregnancy, and surgery should be considered in patients with aortic root > 50 mm [6].
Familial thoracic aortic aneurysm

Familial thoracic aortic aneurysm has been used to designate a heritable predisposition for ascending aortic aneurysm and dissection in the absence of systemic features of a connective tissue disorder. They are affected of ACTA2 gene mutations in 14% of individuals with familial TAA disease and are associated with cerebral aneurysms, premature coronary and cerebrovascular disease, livedo reticularis and iris flocculi [12]. Up to 20% of patients with TAA will have another first-degree relative with thoracic aortic disease [12]. Regalado et al. [32] described 53 women with ACTA2 mutations, who had a total of 137 pregnancies. Eight of them had an acute aortic dissection in the third trimester or the postpartum period (6% of pregnancies). The majority of the aortic dissections were type A, half of which were fatal. The rate of aortic dissection in the peripartum in women with ACTA2 mutation was much higher, compared to the population-based frequency of peripartum dissection of 0.6% [33]. These findings indicate that pregnancy in women with ACTA2 mutations is associated with an increased risk for ascending and descending thoracic aortic dissections with minimal aortic dilatation. Women with ACTA2 mutations who are planning to get pregnant should be counseled about the risk of aortic dissection and aortic root diameter follow-up should be controlled during pregnancy.

Effects of pregnancy on the aorta

The period of pregnancy is characterized by increases in maternal blood volume, heart rate, blood pressure, stroke volume, and cardiac output [34]. Pregnancy-induced alterations in plasma estrogen and progesterone concentrations produce changes in vascular structure that render the aortic media more susceptible to injury imposed by hemodynamic forces [35]. These different effects lead to greater arterial wall tension as well as intimal shear forces. These changes begin in the first and second trimester but are maximal in the third trimester, during labor and in the postpartum period. Arterial wall fragility during pregnancy remains controversial, even if 50% of aortic dissections occur during pregnancy in women under age of 40 [36]. The highest incidence period for arterial dissection and/or rupture during pregnancy is the third trimester (50%) and peripartum period (33%).

Most dissections occur in the ascending aorta, although dissection or rupture of any artery in the body has been described. Recommendations about counseling and management of chronic aortic diseases in pregnancy have been established in 2010, even if levels of evidence are weak [12].

Medical management and follow-up

Patients with aortic pathology should be monitored by echocardiography at 4-12 week intervals throughout the pregnancy and the 6 months postpartum period.

Pharmacologic therapy includes treatment of hypertension, optimal lipid control and smoking cessation [12]. For pregnant women with known thoracic aortic dilatation or a familial or genetic predisposition for aortic dissection, strict blood pressure control, specifically to prevent stage II hypertension, is recommended [12].

Basic treatment involves medications to lessen blood pressure and reduce aortic wall stress and guidelines to modify lifestyle (physical activity, weight-lifting restrictions) and pregnancy recommendations [12]. Angiotensin receptor blocker and angiotensin-converting enzyme inhibitors are contraindicated during pregnancy, because of their risk of teratogenic effects.

Beta-blockers, which decrease the impact force of ejected blood on the aorta, and lower heart rate and blood pressure, are important in the treatment of TAA [12]. It has been suspected for a long time that beta-blockers may reduce the risk of aortic dissection in patients with Marfan syndrome [37]. Indeed, in a 10-year study of beta-blockers in Marfan syndrome, the patients treated with propranolol had a lower rate of aortic root dilatation, and fewer cardiovascular endpoints (defined as aortic regurgitation, dissection, surgery, heart failure or deaths), and improved survival than untreated patients [37].

The recently thoracic aortic disease guidelines have recommended the utility of beta-blockers in patients with Marfan syndrome and aortic aneurysm to reduce the risk of aortic dissection [12], even if a meta-analysis including mostly studies with non-pregnant patients, a beneficial effect was not confirmed [38].

In patients with vascular Ehlers-Danlos syndrome, celiprolol is recommended because of the very high risk of dissections, and the benefit demonstrated in non-pregnant patients [39]. Ong et al. published the results of the Beta-Blockers in the Ehlers-Danlos Syndrome Treatment (BBEST) study, which is a prospective randomised, open, blinded-endpoints trial on the effects of celiprolol (β1-adrenoceptor antagonist with a β2-adrenoceptor agonist action) on primary prevention of cardiovascular events in vascular Ehlers-Danlos syndrome. They randomised 53 patients, assigned to celiprolol (n = 25) or control group (n = 28), to 5 years of treatment.

Treatment of patients with celiprolol compared with no treatment reduces arterial events, such as rupture or dissection, by three times, but this trial did not include pregnant women [39]. Monitoring of fetal growth should be proposed when the mother is taking beta-blockers (risk of fetal growth restriction).

Follow-up of pregnant women with genetic syndromes associated with TAA and dissection

Marfan syndrome

Pregnant women with Marfan syndrome are at increased risk of aortic dissection if the aortic diameter is greater than 40 mm. Women with Marfan syndrome require frequent cardiovascular
monitoring throughout pregnancy and into the postpartum period. We suggest that measurements of aortic root should be practiced once a trimester during first and second trimester and once a month during the third trimester. Evaluation of the aortic diameter during the early postpartum period (first week) is also necessary. Indeed, a few cases of aortic dissections in the postpartum period are described [28,40].

An echocardiogram is recommended at the time of the diagnosis of Marfan syndrome to determine the aortic root and ascending aortic diameter and 6 months thereafter to determine the rate of enlargement of the aorta [12]. For all pregnant women with known aortic root or ascending aortic dilatation, monthly or bimonthly echocardiographic measurements of the ascending aortic dimensions are recommended to detect aortic expansion until birth [12].

For imaging of pregnant women with aortic arch, descending, or abdominal aortic dilatation, magnetic resonance imaging (without gadolinium) is recommended over computed tomographic imaging to avoid exposing both mother and fetus to ionizing radiation. Transesophageal echocardiogram is an option for imaging of the thoracic aorta [12].

Women with Marfan syndrome and aortic dilatation, as well as patients without Marfan syndrome, who have known aortic disease, should be counselled about the risk of aortic dissection as well as the heritable nature of the disease prior to pregnancy [12,21,41].

If progressive aortic dilatation and/or advancing aortic valve regurgitation are documented, prophylactic surgery may be considered [12,28].

The risk of major aortic complication during pregnancy seems to be low when aortic diameter is less than 40 mm. For patients with an aortic diameter larger than 40 mm and Marfan syndrome, half of them will have come to prophylactic surgery during pregnancy, will have a rupture, or will have life-threatening growth. Use of beta-blockers for women with aortic dilatation to control heart rate and reduce shear forces, particularly in the third trimester and postpartum period is recommended. Other cardiotoxic medications such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers are contraindicated during pregnancy.

Pyeritz [42] using phone interview did not report aortic complications during 105 pregnancies in 26 women with Marfan syndrome, but one death due to mitral endocarditis at the end of pregnancy. Rossiter et al. [43] reported follow-up and outcomes of 45 prospectively observed pregnancies in 21 patients with Marfan syndrome. No adverse outcomes and no dissections occurred when aortic diameter was lower than 40 mm. One dissection on the descending aorta and one extension of a pre-existing aortic dissection were reported. He found a similar risk for aortic complication and dilatation in a group of non-pregnant women with Marfan syndrome, matched for age during follow-up of 6 years [43]. Most patients had little to no demonstrable change in aortic root diameter during the course of pregnancy and postpartum period. Follow-up of these patients showed no worsening in long-term cardiovascular prognosis or accelerated dilatation of the aortic root when compared with women with Marfan syndrome who have never been pregnant.

Lipscomb reported 6 aortic complications (including 4 aortic dissections) in 91 pregnancies of 36 women with Marfan syndrome [44].

Meijboom et al. [46] prospectively studied aortic diameter in 127 women with Marfan syndrome, (33 pregnancies in 23 women) using serial echocardiographic examinations. They showed that aortic root enlargement was minimal during pregnancy when the aortic root diameter was less than 45 mm before conception, but diagnosis of Marfan syndrome was known for each woman prior to pregnancy. The authors concluded that pregnancy in women with Marfan syndrome seems to be safe up to an aortic root diameter of 45 mm.

Immer et al. [28] identified in a retrospective review of reports, only 5 of 45 (8.9%) total cases of pregnancy-related aortic dissection occurring after delivery.

Pacini et al. [47] studied the occurrence of aortic complications in their population of Marfan syndrome in 160 pregnancies (n = 85 women) and compared this with the aortic complication rate occurring in women with Marfan syndrome, who had never been pregnant (n = 68). They observed 7 aortic complications during or immediately after pregnancy, with a risk of aortic complication of 4.4% per pregnancy, mainly in the third trimester of pregnancy or after delivery, carefully monitored, in a prospective study [47]. The incidence of aortic complication during a pregnancy was not related to the number of prior pregnancies. They observed 14 aortic complications occurring in women with Marfan syndrome when they had never been pregnant (risk for aortic complication was 1.5% per year of follow-up). Marfan syndrome diagnosis was made later in women who had never been pregnant (33 ± 15 vs 22 ± 14 years old, P < 0.05). During pregnancy, the relative risk of aortic complication was 5.5 (95% CI 2.0–15.5, P = 0.001).

Donnelly et al. [48] prospectively studied 98 women with Marfan syndrome, and tried to assess the impact of pregnancy on the rate of aortic growth as well as on short or long term clinical outcomes. Of these 98 women, 69 had 199 pregnancies, and 35 women with 55 pregnancies could be followed prospectively during their pregnancy with multiple cardiac ultrasonographies, of which 14 entered pregnancy with an aortic root diameter more than 40 mm. No acute dissections were observed during all pregnancies. Two women developed symptomatic carotid artery dissections and 1 patient showed worsening of aortic regurgitation from mild to severe at 38 weeks.
Vascular Ehlers-Danlos syndrome

During pregnancy, women may show increased bruising, hernias, and varicocities, and suffer rupture of large vessels or rupture of the uterus. Because of the risk of uterine rupture, vascular Ehlers-Danlos syndrome is a contraindication for pregnancy. Aortic dissection may occur without dilatation. Twenty-five percent of the patients had a first complication by the age of 20 years, and more of 80 percent had had at least one complication by the age of 40 years. The mortality reported for each complication is about 12%.

The first complication of the disease is an arterial complication in 46% of cases, an intestinal perforation in 19% of cases and an organ rupture (kidney, spleen or liver) in 5% of cases. Arterial lesions suggestive of the disease include dissecting aneurysms of the internal carotid and iliac arteries and of the anterior visceral branches of the abdominal aorta, fusiform aneurysms of the splenic artery and early onset non-traumatic direct carotid-cavernous fistulae. No treatment has been proven to prevent acute arterial events for patients with Ehlers-Danlos syndrome. Women with Ehlers-Danlos syndrome type IV have an increased risk of complications of pregnancy as well as 50 percent risk of having an affected child.

Death was most common following organ rupture (45%) and less common after bowel rupture (2%).

Pepin et al. [14] described 81 women with Ehlers-Danlos syndrome type IV, which had a total of 183 pregnancies. Twelve women died during the peripartum period or within two weeks after delivery (5 of rupture uterine during labor, 2 of vessel rupture at delivery, and 5 in the postpartum period after vessel rupture). Although several pregnant women died of uterine rupture at term, we do not know whether the use of elective caesarean section would decrease mortality.

Lurie et al. [50] reviewed the cases of 26 previously documented pregnant women with Ehlers-Danlos syndrome type IV who had 50 pregnancies and found 20% mortality per pregnancy and 38.5% mortality for each patient. The majority of the deaths occurred in the peripartum period and were due to uterine rupture in two cases and vascular rupture in the other cases.

Turner syndrome

Patients with Turner syndrome should undergo imaging of the heart and aorta for evidence of bicuspid aortic valve, coarctation of the aorta, or dilatation of the ascending thoracic aorta. If initial imaging is normal and there are no risk factors for aortic dissection, repeat imaging should be performed every 5 to 10 years or if otherwise clinically indicated. If abnormalities exist, annual imaging or follow-up imaging should be done [12].

Turner syndrome is associated with risk of aortic root dilatation or aortic dissection. Turner syndrome is characterized by an ovarian failure, which leads to infertility. Less than 10% of women with Turner syndrome may have a spontaneous pregnancy, and most of them required in vitro fertilization to become pregnant. Deaths and severe morbidity during pregnancy and peripartum period are described in women with Turner syndrome, due to acute aortic dissection; this risk of aortic dissection is evaluated to 2%, with an increased risk of maternal death as much as 100-fold during pregnancy [15]. Aortic dissection may occur even there is no dilatation of the aorta [16,51-54]. The severity of morbidity depends on the karyotype, the monosomy 45, X karyotype representing the most affected women and the low-grade mosaic women representing more healthy women [55].

It is therefore absolutely necessary for all women with Turner syndrome to undergo a full cardiological assessment before seeking to become pregnant including echocardiography, thoracic magnetic resonance imaging to verify aortic root, cardiac valves and left ventricular function, hypertension monitoring and treatment. Pregnancy should be contraindicated if exists a history of aortic repair, a history of aortic dissection, an aortic dilatation > 25 mm/m² or > 35 mm, an aortic coarctation or a treated uncontrolled hypertension. Recommendations have been edited by the French National Authority of Health (HAS). Aortic root diameter should be carefully monitored during pregnancy and postpartum period, with an echocardiography in the first and second trimester, a monthly echocardiography during the third trimester, repeated between the fifth or eighth postpartum day. Increase of diameter > 10% should be confirmed with a magnetic resonance imaging. If diameter is > 25 mm/m² or > 35 mm, or increase of the diameter > 10%, intensive monitoring close to a cardiovascular team should be proposed, caesarean delivery should be considered. If aortic root diameter is < 25 mm/m² or < 35 mm, vaginal delivery with expedited second stage and instrumental delivery, and with epidural anaesthesia may be considered, but 85% of women with Turner...
syndrome will finally deliver by caesarean due to cephalopelvic disproportion.

Loeys-Dietz syndrome

Patients with Loeys-Dietz syndrome, or a confirmed genetic mutation known to predispose to aortic aneurysm and aortic dissection (TGFBR1, TGFBR2, FBN1, ACTA2, or MYH11) should undergo complete aortic imaging at initial diagnosis and 6 months thereafter to establish if enlargement is occurring. Patients with Loeys-Dietz syndrome should have yearly magnetic resonance imaging from the cerebrovascular circulation to the pelvis [12].

Loeys described 21 pregnancies among 12 women with Loeys-Dietz syndrome, 6 of them had a major complication during pregnancy or immediate postpartum period (aortic dissection in four and uterine rupture in two) [19].

We did not find any recommendations about the follow-up during pregnancy and mode of delivery, but we consider that Loeys-Dietz syndrome is at high risk of maternal complications during pregnancy (aortic dissection as well as uterine rupture), a closely follow-up of aortic root diameter should be proposed (every month) and a prophylactic premature caesarean after fetal lung maturation should be considered.

Bicuspid aortic valve

Siu and Silversides [56] studied prospectively a group of patients affected by bicuspid aortic valve and they showed that 28% of them had an aortic root dilatation and after 9 years of follow-up, the prevalence had increased to 45% with a median increase in the aortic sinus dimension of 0.2 mm/year. Even though the group of pregnant women which continues to represent a high-risk for maternal and fetal morbidity, their overall mortality risk is < 1% based on recent studies [57-59].

Mode of delivery

During active labor, further hemodynamic changes occur. A 30–50% increase in cardiac output occurs in normal pregnancy. During labor and postpartum period, uterine contractions, pain, positioning, anxiety, bleeding, and uterine involution cause significant hemodynamic changes. Each uterine contraction forces an additional 300 to 500 mL of venous blood back into the central venous system. During the second stage of labor, blood pressure and heart rate can increase markedly with pain while Valsalva manoeuvres during pushing efforts can result in large fluctuations in central venous system. Immediately after delivery of the placenta, 500 mL of blood is diverted from the uteroplacental bed back into the maternal circulation like an "auto-transfusion", increasing central venous pressures, ventricular preload and cardiac output.

The following of these high-risk pregnancies should be proposed in a specialized center and the choice and management of the delivery discussed in multidisciplinary team.

The principal aim of peripartum management of women with aortic root aneurysm is to limit and reduce the cardiovascular stress of labor and delivery. Beta-blockers should be continued during peripartum period if the women are treated during pregnancy.

Locolregional anaesthesia techniques can be difficult in Marfan women, if they particularly have severe scoliosis or dural ectasia, and locoregional anaesthesia is advised to prevent blood pressure peaks (medical indication). If the aortic root diameter is 40–45 mm, vaginal delivery with expedited second stage (instrumental delivery) may be considered, as well as caesarean delivery, based on each individual situation.

For patients with Marfan syndrome, if the aortic root diameter exceeds 45 mm, caesarean delivery is advised. If the aortic diameter is less than 40 mm, vaginal route with maternal efforts can be allowed. If this diameter is greater than 45 mm, caesarean section before labor should be considered, according to the risk of aortic dissection during labor or postpartum period, but data are limited. If dissection occurs during pregnancy, better outcome is obtained when surgical repair of the aorta is concomitant to caesarean section [60]. If gestational age is very pre-term, repair of the aorta is realized during the pregnancy.

Pregnant women with aortic aneurysms should be delivered where cardiothoracic surgery is available, with inborn in the treating center [12]. Delivery by caesarean section is reasonable for patients with significant aortic enlargement, dissection, or severe aortic valve regurgitation [12,41].

Caesarean section before labor allows limitation of blood pressure and cardiac output variations, which increase arterial rupture’s risk. This mode of delivery also limits risk of uterine and perineal complications. If the vaginal route is preferred, use of forceps should be very careful with the risk of perineal lesions, but forceps delivery leads to shorten the second stage of labor to reduce cardiovascular stress. Arterial micro-dissections constitute during the labor could explain the dramatically late postpartum vascular complications.

For women with vascular Ehlers-Danlos syndrome and Loeys-Dietz, early caesarean delivery after fetal lung maturation must be considered.

Acute aortic syndrome during pregnancy

Half of acute aortic dissection in women under the age of 40 occurs during pregnancy or peripartum period. Acute aortic dissection is a life-threatening medical emergency associated, even in-hospital arisen, with high rates of mortality and morbidity. Sudden onset of severe sharp pain is the single most common presenting complaint, but clinical presentation can be very diverse. Any pregnant women with aortic disease may present, during pregnancy, an acute aortic syndrome. The third trimester, the delivery and the early postpartum period
C. Coulon

from multi-organ failure after aortic surgery followed the caesarean section. One patient died.

Four women were at gestational age more than 32 weeks and maternal mortality rate is high (5%) and the fetal and neonatal mortality also (about 15 to 30%) [61, 62].

In patients with Marfan syndrome with an aortic root diameter more than 40 mm should undergo preconceptional counseling for surgical aortic repair before pregnancy.

 Patients with Marfan syndrome with an aortic aneurysm should be evaluated closely and continuously during pregnancy by multidisciplinary specialists to prevent aortic dissection that could be fatal for both mother and child.

Women with Turner syndrome should be contraindicated for pregnancy if exists a history of aortic repair, a history of aortic dissection, an aortic dilatation > 25 mm/m² or > 35 mm, an aortic coarctation or a treated uncontrolled hypertension.

In patients with Turner syndrome with additional risk factors, including bicuspid aortic valve, coarctation of the aorta and/or hypertension, and in patients who attempt to become pregnant or who become pregnant, it may be reasonable to perform imaging of the heart and aorta to help determine the risk of aortic dissection.

Women should be also counseled about the heritable nature of the disease prior to pregnancy.

Conclusion

Several genetic disorders involving aorta have been reported to result in a risk of aortic dissection or rupture during pregnancy. Following and management of the pregnancy and peripartum period should be proposed in a center, where cardiovascular surgery is available.

Beta-blockers are commonly used in case of aortopathy. Mode of deliver should be discussed in a multidisciplinary team, involving obstetrics, anaesthesia and cardiovascular surgeon.

Disclosure of interest: the author declares that she has no conflicts of interest concerning this article.
Thoracic aortic aneurysms and pregnancy

References

© 2019 Elsevier Masson SAS. All rights reserved. - Document downloaded on 28/04/2019 It is forbidden and illegal to distribute this document.
C. Coulon

