Opinion/Feedback  The mechanisms that govern the application of noninvasive functional electrical stimulation (FES) have been delineated and clearly described in numerous evidenced-based research publications. The aim of this review is to summarize the primary, multi-system effects of noninvasive FES on the musculoskeletal system, the peripheral vascular system, and the central nervous systems. The presentation will relate these effects to multiple efficacious clinical studies in neuro-rehabilitation. The presentation will include discussion of the latest technological advancement in wearable FES systems and their critical role in achieving functional recovery following damage to the brain. The presentation will also offer an advanced practice model guided by the latest trend in the medical field focusing on patient-centered, personalized intervention.

Keywords  Functional electrical stimulation (FES); Mechanism of action; Wearable

Disclosure of interest  The author declares that he has no competing interest.

http://dx.doi.org/10.1016/j.rehab.2016.07.061

CO0259
A randomised clinical trial comparing a new bed rails and lifting pole in lying-sit transfer in elderly patients

Emilie Viollet *, Dominique Richard, Mylène Blot, Fabrice Nouvel

CHU de Nîmes, Médecine Physique et Réadaptation, Nîmes, France

* Corresponding author.

E-mail address: emilie.viollet@chu-nimes.fr (E. Viollet)

Objective  A total of 27.6% of elderly people can not transfer from supine to sitting position. This driving plan consists on an anterior flexion and rotation of trunk to bring center of mass near the edge of bed. With ageing, we observe modifications like more requests of upper limbs and less turn side. The aim of this study is to compare influence of two assistive devices in the supine to sitting transfer: SAM, a new bed rails and the lifting pole.

Patients and methods  Patients more than 65 years, after consent signature, were lying in a medical bed with lifting pole or SAM after randomisation. Each patient is asked to sit up in the edge of bed in two consecutive attempts. During the second transfer they were filmed. At the same time, a pressure sensor sheet, arranged between button and mattress, was recording the evolution of center of mass. The main criterion is the success of the transfer. Secondary criterion is the time to do the transfer and the evolution of the center of mass. Videos were looked by two persons to assess success or failure and time.

Results  Thirty-eight patients were included among which 19 used SAM. Seventeen patients made a successfully transfer with SAM against 13 with lifting pole. Time to do transfer was not significantly different with the two devices (12.5 s with SAM versus 12 s with lifting pole).

The center of mass evolved in posterior, in particular in SAM in particular during the first five seconds. While with the lifting pole, the center of mass evolved in posterior, in particular in patients who have failed.

Discussion/Conclusion  The ergonomic of the used device seems to influence the driving plan. The clinical evaluation thus has to accompany the research and development to help to find the best clinical and indicator criteria of assistive devices evaluations.

Keywords  Supine to sitting transfer; Elderly people; Driving plan; Assistive device

Disclosure of interest  The authors declare that they have no competing interest.

http://dx.doi.org/10.1016/j.rehab.2016.07.062

CO0258
Evaluation of seating intervention effect for patient at Toulouse University Hospital’s wheelchair seating clinic (WSC)

Marie Belle *, Caroline Terracol, Evelyne Castel-Lacanal, Gaelle Le Floch, Sylvie Hidalgo, Philippe Marque, Xavier de Boissezon

CHU Rangueil, MPR, Toulouse, France

* Corresponding author.

E-mail address: mariebelle.mpr@gmail.com (M. Belle)

Objective  The seating intervention for wheelchair users intends to achieve a comfortable and functional position and to limit the risk of complications due to long sitting period (pain and discomfort, skin disorders, orthopedic, respiratory, digestive diseases). Few scientific papers about seating intervention in adults are published. The objective of the present study is to assess the objective and subjective effects of wheelchair seating intervention for patients at Toulouse University Hospital’s WSC.

Patients and methods  A cohort study of patients cared at the Toulouse University Hospital’s WSC between April 2014 and April 2016.

The main criterion is the evaluation of patient’s seating goal at 3 months of delivery of the equipment by the Goal Attainment Score (GAS). Other criterions are the evaluation of pain by visual analog scale (VAS), the comfort of the Assessment Tool Wheelchair Comfort (TAWC), the sitting time (hours per day) and the sitting posture [Seated Postural Control Measure for Adults (SPCMA)].

Results  Preliminary results show with 40 patients (mean 51 years ± 17); among them, 11 have spinal cord injury, 7 stroke. The most common deficiency is tetraplegia (20). Seventeen patients have cognitive impairment. Thirty-six patients have at least one complication of postural control disorder with 19 painful patients. Twenty-six patients completed the positioning care. GAS at 3 months improves: median +2 (min; 0/max: 3). The SPCMA improves: median +8/56 points (min; 0/max: 26). This improvement is statistically significant (Wilcoxon: P < 0.001). The pain and discomfort decreased significantly (EVA Wilcoxon: P = 0.005; TAWC Wilcoxon: P = 0.03). The sitting time is not modified.

Discussion/Conclusion  These preliminary results show the effectiveness of seating intervention on posture, pain and discomfort. Patient’s goals are the most often reached. These preliminary results show the efficiency of WSC for patients, not only to improve posture.

Keywords  Seating intervention; Wheelchair; Seated postural control; Comfort; Goal

Disclosure of interest  The authors declare that they have no competing interest.

http://dx.doi.org/10.1016/j.rehab.2016.07.061
after placing a novel femoral implant that permits distal weight bearing of the residuum within a socket, adapted for distal load bearing.

**Material and methods** Thirty TF amputees with an amputee history of more than 12 months received an all-inside femoral implant, comprised of a femoral stem and a polyethylene spacer that allows distal load of the residuum within an adapted socket. The post-intervention follow-up period was 14 months. The applied rehabilitation schedule was our standard one, and no hardware changes were allowed during the follow-up period of 14 months, except for the adapted socket. Functionality was evaluated using the standard 2-minute walk test (2MWT) and the physiological cost index (PCI).

**Results** To date 19 patients (8 trauma, 8 vascular and 3 tumour patients) have finished the follow-up period. Prior to the implant placement the mean 2MWT covered distance was 103.16 m (SD = 33.03), and at 14 months was 124.95 m (SD = 39.22), (P = 0.00); an increase of 21.1%.

The initial mean Visual Analogue Pain (VAS) score was 2.26 (SD = 2.76) and at 14 months 0.42 (SD = 0.77), (P < 0.005), a reduction of 81.4%. The PCI reduction (D heart rate/walking speed) was not statistically significant (P < 0.596). The observed increase of oxygen consumption in the vascular group (+ 20.15%) also indicates an additional beneficial general health improvement for this type of patients.

**Discussion/Conclusion** The results of the present study show significant improvements in walking speed, pain reduction, hours of prosthesis use and general health status at 14 months after having received a femoral distal load implant in patients of different etiology.

**Keywords** Transfemoral amputation; Femoral implant; Distal charge

**Disclosure of interest** The author declares that he has no competing interest.

http://dx.doi.org/10.1016/j.rehab.2016.07.064

**P001**

**Podiatric complications during a premature aging syndrome: Rare case**

Siham Zahi *, Laila Mahir, Soumia Meftah, Fatima Lmidmani, Abdellatif El fatimi

*Ibn Rochd, MPR, Casablanca, Morocco

**Objective** Premature aging syndromes are very rare and most often hereditary. Initially purely descriptive entities, these syndromes are now much better understood genetically and pathophysiological and can now be classified according to the mechanisms involved. They often manifest as a pigmented skin dry, atrophic and sclerotic. There is no treatment for these conditions apart from that of their complications (frequent ulceration).

**Observations** Forty-five years of patient follow-up in dermatology for premature aging syndrome, addressed in our service for podiatric care.

Podiatric examination: shiny thin skin, sclerotic and pigmented; valgus big toe bilateral irreducible with claw toes; hyperkeratosis at the heads of the metatarsals and the outer edge of the metatarsal head of the big toe.

Optical podooscopy: bilateralcalcaneal varus more marked on the left; grade hollow foot 3 left and flat foot grade 1 right and no support on the toes left.

Static electronic podooscopy: hyper-based at the forefoot: metatarsal heads bilaterally and in the left heel. Our action was the prescription of custom orthopedic shoes, preceded by a preliminary preparation of the skin.

**Discussion/Conclusion** Aging syndrome is a very rare disease that has many complications. The impact on the feet is very annoying.