Influence of fixation point of latissimus dorsi tendon transfer for irreparable rotator cuff tear on glenohumeral external rotation: A cadaver study

K. Bargoina,\ast, M. Boissardb, J. Kanyc, J. Grimbergd

a Le Confluent-Nouvelles Cliniques Nantaises, Nantes, France
b Centre Hospitalier Universitaire, Nantes, France
c Clinique de l’Union, Saint Jean, France
d Institut de recherche en chirurgie orthopédique et sportive, Paris, France

ARTICLE INFO

Article history:
Received 20 December 2015
Accepted 5 September 2016

Keywords:
Latissimus dorsi
Rotator cuff tear
Tendon transfer
Joint range of movement
Cadaver study

ABSTRACT

Latissimus dorsi tendon transfer is a surgical option for treating irreparable posterosuperior rotator cuff tears, notably when attempting to reconstruct active external rotation. We hypothesized that the positioning of the transfer’s point of fixation would differ depending on the desired elbow-to-body external rotation or external rotation with the elbow abducted.

Material and methods: Seven shoulders from four whole frozen cadavers were used. We created two systems to install the subject in a semi-seated position to allow external rotation elbow to body and the arm abducted 90°. Traction sutures were positioned on the latissimus dorsi muscle and a massive tear of the rotator cuff was created. We tested six different transfer positions. Muscle contraction of the latissimus dorsi was stimulated using 10-N and 20-N suspended weights.

Results: The point of fixation of the latissimus dorsi on the humeral head had an influence on the elbow-to-body external rotation and with 90° abduction ($P<0.001$). The fixation point for a maximum external rotation with the elbow to the body was the anterolateral position ($P<0.016$). The fixation point for a maximum external rotation at 90° abduction was the position centered on the infraspinatus footprint ($P<0.078$).

Conclusion: The optimal point of fixation differs depending on whether external rotation is restored at 0° or 90° abduction.

Level of evidence: Fundamental study, anatomic study.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Muscle-tendon transfers are frequently used to treat muscle paralysis. Latissimus dorsi (LD) tendon transfer is a surgical option for treatment of irreparable posterosuperior rotator cuff tears, initially proposed by Gerber et al. in 1988 [1–4]. The objective of this surgery is to reduce pain and restore shoulder function [1,3,5–10]. Gerber et al. have recently shown good long-term results for this indication [11]. A massive and irreparable tear of the rotator cuff is defined as a tear involving more than two tendons [12] with reattachment to the greater tubercle impossible despite extended release [13].

Active external rotation of the glenohumeral joint intervenes in many basic daily activities such as eating, shoving, shaking hands, and combing one’s hair [14,15]. Active external rotation of the shoulder solicits the infraspinatus and teres minor muscles depending on the arm position. External rotation elbow to body at 90° abduction is assessed through functional tests (dropping sign and hornblower’s sign) [16–18]. Biomechanical studies on LD transfer have contributed to improving the fixation and positioning of tendon transfer [19]. However, some of these studies were conducted with computer simulations of these movements [20–24], not necessarily accurately representative of actual biomechanics.

Shoulder tendon transfers have shown variable results in the literature [25–27]. LD transfer should respect several fundamental biomechanical rules to function properly [28,29]: physiological tension of the tendon transferred, the least invasive possible surgical exposure to reduce postoperative peritendinous fiber reactions, synergetic work of the tendon transferred, the type fixation

http://dx.doi.org/10.1016/j.otsr.2016.09.012
1877-0568/© 2016 Elsevier Masson SAS. All rights reserved.
resisting physiological traction forces, and ideal positioning to restore joint movements.

In addition, arthroscopic procedures have recently been proposed to improve the result given its less invasive approach [30–32]. The tendon can also be tubularized [33] to obtain a specific fixation and provide sufficient resistance to traction [19,34]. The most frequently used position is located at the junction of the supraspinatus footprint and the infraspinatus [22,35].

To date, the position of the tendon transfer on the external rotation using an entire, fresh subject in the semi-seated position has not been studied. The objective of the present study was therefore to assess the optimal fixation point for the tendon transfer of the LD on the humeral head to restore active external rotation. We hypothesized that the positioning of the transfer fixation point would differ depending on the external rotation desired, elbow to body or with the elbow abducted.

2. Materials and methods

We used seven shoulders from fresh-frozen whole-body cadavers, three right shoulders and four left shoulders. The cadavers were preserved at −15 °C for a maximum 10 days after their death. All the shoulders had complete freedom of movement. Two of the authors performed the dissections.

The exclusion criteria were a cadaver more than 10 days since death, rotator cuff tear already present, a history of shoulder surgery, osteoarthritis, and an injured shoulder.

2.1. Preparation of tendon transfer

A wide posterior approach was opened to expose the LD muscle and its proximal insertions up to its distal insertion. We released it from its skin attachments and from the inferior angle of the scapula. The deltoïd was excised to allow access to the rotator cuff. The tendon of the LD was tubularized with Ethibond suture (ETHIBOND EXCEL size 1, Ethicon® Cincinnati, OH, USA).

During the dissection, the neurovascular pedicle of the LD was identified and preserved. The traction sutures were placed every 2 cm² using cross stitches through the entire thickness of the muscle on the different bodies of the LD. Each traction suture was adjusted independently, following the orientation of the muscle fibers, and then they were joined for traction on the entire muscle.

A massive tear of the rotator cuff was created by resecting the infraspinatus and supraspinatus tendons. The subscapularis, the long head of the biceps, the capsule, the coracoacromial and coracoclavicular ligaments were left intact.

2.2. Installation in the beach-chair position

Two adjustable systems, adapted to the size of the cadavers, were created to install them in the beach-chair position. The first system was designed to allow external rotation, elbow to the body, maintaining the elbow flexed at 90° using a suspended weight attached to the wrist. This weight was equivalent to the weight of the forearm. The amplitude of the external rotation was assessed with no obstruction between the forearm and the measurement system (Fig. 1A). The second system was designed to allow external and internal rotation, the arm abducted 90 ° , using a block placed under the elbow. A suspended weight, equivalent to the weight of the forearm, was attached to the wrist to compensate for gravity (Fig. 1B).

2.3. Fixation

The footprint of each tendon on the greater tubercle was identified and mapped to facilitate the reproducibility of each fixation point [36].

Each shoulder was tested with six different positions of the tendon on the humeral head using staple fixation. Staple fixation for the tendon was preferred over anchor or screw fixation to reduce the risk of humeral head fracture and to allow repositioning the transplant as often as needed.

The LD tendon was tubularized and attached on the insertion area of the humeral head with two metal staples in a cross to simulate an anchor fixation.

Six positions were tested (Fig. 2A): position X1: lower part of the infraspinatus footprint, X2: centered on the infraspinatus footprint, X3: between the footprint of the infra- and supraspinatus, X4: centered on the footprint of the supraspinatus, X5: anterolateral position, X6: double fixation on the anterolateral position and the lower part of the infraspinatus footprint (X1 + X5).

2.4. Measurement

LD contraction was simulated using a suspended weight from 10 N to 20 N. Each position was tested three times at 0° and 90° abduction. The amplitude of the external rotation after simulation of the LD contraction was measured in degrees by a direct reader.
Fig. 2. Fixation points of the tendon transfer on the humeral head. (A) Humeral head; (B) lesser tubercle; (C) long head of the biceps; (D) greater tubercle; (E) supraspinatus footprint; (F) infraspinatus footprint; (G) long biceps groove; staple fixation points: X1 – lower part of infraspinatus footprint; X2 – centered on the infraspinatus footprint; X3 – between the infra- and supraspinatus footprints; X4 – supraspinatus footprint; X5 – anterolateral position; X6 – 2 fixation points X5+X1.

(Fig. 1). The mean of the three measurements was calculated; if a difference greater than 5° was found, a fourth measurement was taken.

We found a nonparametric distribution of the results because of the small sample size. We used a Wilcoxon test for the comparisons; P<0.05 was considered statistically significant. The statistical analysis was done using SAS software® (SAS Institute, Cary, NC, USA).

3. Results

In one case, a tendon tear at the myotendinous junction occurred at 90° abduction. The results of this case were excluded from analysis.

All the positions studied at 20 N of traction resulted in greater external rotation range of movement than with 10-N traction (P<0.001) (Fig. 3).

The LD fixation point on the humeral head had an influence on the external rotation when compared to external rotation at 0° and 90° abduction (P<0.001).

The fixation point for maximum elbow-to-body external rotation was located in the anterolateral position (X5) (P<0.016) (Table 1). The fixation point for external rotation with the arm at a maximum 90° abduction was located in the position centered on the infraspinatus footprint (X2) (P<0.078). When a double fixation X6 (X5+X1) was used, the gain in external rotation was less than with a single fixation, X5 at 20 N (P<0.016). The gain in external rotation, elbow to body, between two contiguous points X4 and X5 at 20 N was 56.6%.

4. Discussion

The results of this study showed that the optimal position of the LD tendon transfer on the humeral head to increase elbow-to-body external rotation was the anterolateral position (X5). The positioning centered on the infraspinatus footprint (X2) was optimal for increasing external rotation with the arm in abduction at 90°.

Several explanations could be possible for these different results between 0° and 90° abduction. The direction and trajectory of the tendon around the humeral head are modified between 0° and 90° abduction. We also observed different collateral movements (anterior flexion, humeral head lowering with retropulsion and a bowstringing effect of the LD tendon on the humeral head for the most anterior fixations described by Herzberg [35]). Although we did not measure these movements precisely, we noted that they differed in their direction depending on the degree to which the arm was abducted.

Table 1

<table>
<thead>
<tr>
<th>Position</th>
<th>External rotation at 0° abduction</th>
<th>External rotation at 90° abduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 N</td>
<td>20 N</td>
</tr>
<tr>
<td></td>
<td>10 N</td>
<td>20 N</td>
</tr>
<tr>
<td>Position 1 (X1)</td>
<td>4.86 ± 1.47</td>
<td>9.14 ± 2.53</td>
</tr>
<tr>
<td>Position 2 (X2)</td>
<td>9.14 ± 2.53</td>
<td>16.00 ± 4.00</td>
</tr>
<tr>
<td>Position 3 (X3)</td>
<td>9.71 ± 1.84</td>
<td>18.57 ± 3.27</td>
</tr>
<tr>
<td>Position 4 (X4)</td>
<td>12.57 ± 3.55</td>
<td>23.71 ± 4.45</td>
</tr>
<tr>
<td>Position 5 (X5)</td>
<td>22.57 ± 4.69</td>
<td>37.14 ± 6.24</td>
</tr>
<tr>
<td>Position 6 (X6)</td>
<td>7.43 ± 1.67</td>
<td>16.00 ± 3.14</td>
</tr>
</tbody>
</table>

Fig. 3. (A) Range of motion of external rotation for each position, body to elbow, at 10 and 20 N. (B) Range of motion of external rotation for each position with the arm abducted 90° at 10 and 20 N.
The infraspinatus and the teres minor are the external rotators of the cuff. The infraspinatus may be more closely involved for external rotation at 0° abduction, the teres minor for external rotation at 90° abduction [14,18,37,38]. With supraspinacular nerve blocks, Gerber et al. showed that the infraspinatus was the most important muscle for strength in external rotation, whatever position the arm is in [38]. For Gerber et al., the teres minor only contributes 20% of the strength in external rotation. Kurokawa et al. [14] used position emission tomography to conclude that the infraspinatus and the teres minor were the main muscles in the shoulder’s external rotation. The teres minor/infraspinatus ratio was 0.84 for elbow-to-body external rotation, while it was 1.21 for external rotation with the arm abducted 90°. For Kurokawa et al., the teres minor was the main muscle involved in external rotation when the arm is abducted. Walch et al. [18] confirmed the importance of the teres minor in external rotation at 90° abduction. They described the hornblower’s sign, which is present when there is teres minor injury. For Kuechle et al. [37] the infraspinatus had a more favorable moment arm than the teres minor and the posterior deltoid for external rotation.

We believe that the LD transfer fixation point should be selected in relation to preoperative external rotation elbow to body and arm abducted, fat degeneration, and atrophy of the teres minor and the infraspinatus. However, tendon transfer of a single muscle cannot replace the function of two or more deficient muscles, notably in terms of muscle power [26]. We believe that it could be useful to undertake LD transfers in association with other tendon transfers, such as the inferior trapezius, to restore abduction and external rotation [39]. In case of a double bone fixation of the tendon, the closest point of the muscle body is the point that defines the possibilities of external rotation (e.g., in the X6 position; the force produced by the LD is exerted only on point X1).

This was an original study because it used fresh whole-body cadavers. It assessed the effect of a single parameter on external rotation: the location of the fixation point of the LD tendon transfer. The measurement tool is simple and easy to use. It can be used to study external rotation with other tendon transfers.

The limitations are the small number of shoulders and the absence of a navigation system that would have provided a three-dimensional analysis of the collateral movements.

5. Conclusion

LD tendon transfer acts on external rotation, which depends on the fixation point on the humeral head. The optimal fixation point differs depending on whether one wishes to restore external rotation at 0° or 90° abduction. A 2-cm modification of the fixation point can vary the efficacy of the transfer up to 56%.

The fixation point for maximum elbow-to-body external rotation is located in the anterolateral position in relation to the supraspinatus footprint. The fixation point for external rotation with the arm abducted a maximum 90° is located in the position centered on the footprint of the infraspinatus.

Disclosure of interest

The authors declare that they have no competing interest.

Acknowledgements

Our thanks are extended to the Nantes Anatomy Laboratory.

References