Limb fractures: ultrasound imaging features

S Haddad-Zebouni (1), S Abi Khalil (1), S Roukos (2), L Menassa-Moussa (1), T Smayra (1), N Aoun (1) and M Ghossain (1)

Abstract

US, a non-irradiating imaging modality, is complementary to radiographs in the evaluation of limb fractures. US may in some cases demonstrate or suggest the presence of a fracture without corresponding abnormality on radiographs, or confirm or exclude a possible fracture detected on radiographs. Knowledge of the US features of fractures is necessary. In this article, the different direct and indirect US findings of fractures will be reviewed, with radiographic correlation. Direct findings include cortical discontinuity or irregularity. Indirect findings include subperiosteal or juxtaphysal hematoma suggesting cortical or physeal fractures respectively.

Key words: US. Radiology. Fractures. Limbs.

Radiographic features

All fractures were initially detected on radiographs. Different nomenclatures or classifications were used. Fracture sites could be diaphyseal, metaphyseal and/or epiphyseal; the fracture line could be transverse, oblique or spiral; displacement could be present. In addition to the direct fracture visualization, a few indirect signs could be present (fat pad displacement, soft tissue thickening suggesting edema). Pediatric fractures were particular because they could involve the physeal cartilage (physeal fracture) or soft more pliable bones (buckle fractures, greenstick fractures, traumatic bowing).

US features of normal bones

In spite of the fact that cortical bone is a barrier to ultrasound waves, US evaluation of the bone surface provides much information (fig. 1). The cortex appears as a smooth and regular echogenic line, as a smooth and regular echogenic line,
clearly visible, overlying an echo-poor region called posterior shadowing. At both ends, cartilage is visualized, very hypoechoic, nearly anechoic. Tendons frequently course near cortex. On longitudinal sections, they are overall echogenic, composed of fibers parallel to bone surrounded by a matrix of intermediate signal. On transverse sections, they are oval-shaped, with small regular echogenic foci (3). Adjacent muscles are hypoechoic, with linear echogenic lines on longitudinal sections and dots on transverse sections. Fatty tissues are hypoechoic as well. The soft tissues surrounding bones, especially fat, are particularly well depicted on US, especially in the setting of post-traumatic changes (3).

US features of fractures

Several US findings (4, 5) resulting from alterations of the normal anatomy described previously should be detected and recognized in a clinical context of fracture.

Cortical disruption

A fracture on US, similar to radiographs, is characterized by disruption or deformity of the normal cortical margin (6). Both findings correspond to direct signs of fracture. They are frequently visualized on US. Cortical disruption may have multiple appearances on US: either cortical step-off deformity, avulsion, or impaction (5).

Step-off deformity

Fractures with step-off deformity are frequently visible on conventional radiographs. It is the result of displacement at both ends of the fracture (fig. 2).

Cortical avulsion

Cortical avulsion fractures are usually easy to detect on conventional radiographs since they result from avulsion of the radiopaque cortex. However, the avulsed fragment may only be visible on a tangential projection where it appears separate from the donor bone whereas it may be imperceptible on an en-face projection where it is superimposed on the donor bone. The detection of such fractures may be problematic when they arise from smaller bones, such as the carpal or tarsal bones. In these cases, the tangential projection cannot confirm the donor site, and the fracture is not visible on the en-face projection. This can easily be solved with US where the fractured bone is identified underneath the avulsed cortical fragment (fig. 3). However, it may sometimes be difficult to differentiate between avulsed cortical fragment, osteophyte and calcification on US. Nonetheless, the clinical context, absence of arthrosis (especially in children) and
occasional presence of a hematoma will assist in making the correct diagnosis.

Impaction

Impaction may be difficult to detect on radiographs, especially when minimal. On US, cortical impaction is easily detected (fig. 4).

Cortical irregularity

Cortical irregularity is pathognomonic for pediatric fracture where the softer bone is deformed instead of broken. Deformation of cortical bone is most frequent in infants due to the increased plasticity of the bone matrix in this patient population. This may present with minor outer buckling of both cortices at the fracture line (fig. 5), a stair-step appearance (fig. 6) or traumatic bowing (fig. 7).

Reverberation

Reverberation echo is another direct sign of cortical fracture (4). It is most frequently associated with cortical avulsion fractures. This finding can be explained purely based on physical principles. Normally, the US wave is reflected by cortex, with underlying posterior shadowing. In patients with fracture, especially a cortical avulsion fracture, US waves are being reflected at two different levels: at the level of the avulsed cortical fragment and at the level of the donor bone. In addition, some US waves may be trapped between both cortical surfaces, bouncing back and forth before returning to the transducer, creating a reverberation artifact.
Fig. 5: Outer cortical buckling.

a Wrist radiograph (frontal projection).
Irregularity with outer metaphyseal cortical buckling (arrow) consistent with a buckle fracture.

b US of the symptomatic region (posterior median sagittal image) showing outer cortical buckling (arrow).

Fig. 6: Stair-step deformity.

a US of the distal radius (posterior sagittal image).
Stair-step deformity (arrow) at the fracture site.

b A buckle fracture (arrow) is confirmed on a forearm radiograph.

Fig. 7: Traumatic bowing.

a US of the proximal phalanx of the thumb.
Cortical deformation with bowing (arrow) at the distal end of the proximal phalanx of the left thumb not present on the contralateral side. Note the presence of an overlying hypoechoic hematoma (star).

b Corresponding radiograph of the left thumb.
Demonstration of traumatic bowing (arrow).
characterized by parallel echogenic lines at regular intervals (fig. 8).

Posterior acoustic shadowing

A cortical fracture may also occur following a compression injury as opposed to a traction injury. The compression mechanism of injury causes a focal increase in cortical density resulting in increased reflection of the US waves relative to the adjacent normal cortex. As a result, there is focal increase in the degree of posterior acoustic shadowing at the fracture site (fig. 9). This is a direct sign of fracture, often associated with buckle fractures.

A cortical fracture may be subtle even on US with apparent preservation of cortical continuity. The advantage of US resides in its ability to detect the presence of indirect signs such as periosteal elevation and hematoma.

Periosteal elevation

The presence of periosteal elevation is suggestive of fracture (1). It is characterized by the presence of an additional echogenic
line parallel to the cortex. The main differential diagnosis is with osteomyelitis, especially in children (7), but the clinical context should allow accurate diagnosis.

Hematoma

Another indirect sign of fracture is the presence of a subperiosteal (fig. 10) or juxta-physeal (fig. 11) hematoma. The hematoma is secondary to a fracture, even if the fracture site cannot be directly demonstrated. The hematoma usually is heterogeneous on US, often hypoechoic, with echogenic components. Mass effect upon adjacent structures may be present, either tendons (fig. 12) or a fat pad normally intimately applied against cortex (fig. 13).

Conclusion

Technical advances in the field of US imaging have improved the accuracy of this imaging modality for musculoskeletal disorders and increased the number of applications, including musculoskeletal trauma (8). The addition of US to conventional radiographs is increasingly being obtained to improve the diagnostic accuracy of fractures of the limbs. In some circumstances, US may be a satisfactory alternative to radiographs. However, sonographic evaluation of musculoskeletal trauma requires time, patience, and expertise from the operator in order to develop the referral pattern.

Fig. 10: **Subperiosteal hematoma.**
US of the symptomatic region at the distal ulna (posterior sagittal image). Hypoechoic subperiosteal hematoma (arrow) with focal cortical disruption (arrowhead).

Fig. 11: **Juxta-physeal hematoma.**
US of the symptomatic region at the proximal end of the fifth metatarsal. Heterogeneous collection next to the physis (arrow) consistent with hematoma probably secondary to a traumatic physeal lesion.

Fig. 12: **Tendon displacement.** **US of the scaphoid.** Heterogeneous hypoechoic hematoma (star) overlying the scaphoid (arrowhead) displacing the flexor pollicis tendon (arrow).
Références