Angiogenesis is required for tumor growth and metastasis when tumor reaches more than 1 mm in diameter. Our primary interest is to further investigate the mechanism of PI3K in angiogenesis and tumorigenesis. Our recent study shows that PI3K and Akt in cancer cells play an important role in regulating tumor growth and angiogenesis through VEGF and HIF-1 expression. PI3K regulates VEGF and HIF-1 expression through HDH2 and p70S6K1 in human cancer cells, and PTEN inhibits VEGF and HIF-1 expression. We also shows the important role of PI3K and Akt expressed in human endothelial cells in regulating angiogenesis and tumor growth, and the potential inhibition of the PI3K/AKT pathway in cancer prevention and therapy, tumorigenesis and angiogenesis.

7

Expression of CD40 on glioma and the relationship with tumor angiogenesis

Xueguang Zhang
Biological Research Institute, Suzhou University, 708 Remin Road, 215007 Suzhou, China

CD40, member of the tumor necrosis factor receptor (TNF-R) gene family is expressed by numerous cell types including most professional antigen-presenting cells (APCs), monocytes, and endothelial cells and so on [1]. Its ligand (CD40L, also called CD154), is predominantly expressed by activated CD4+ T cells and platelets [2]. Interactions between CD40 and CD40L, have repeatedly been found to be of importance in the activation of EC for the expression of adhesion molecules and the production of several proinflammatory cytokines and chemokines in vitro and in vivo[3]. Moreover, ligation of CD40 results in the production of several angiogenesis factors, including VEGF [4], and promotes a VEGF-dependent angiogenesis reaction [5]. In our study, the relationship between CD40 and VEGF as well as their contributions to neovascularization under the condition of disoxidation were investigated. The expressions of CD40 and VEGF were studied by S-P immunohistochemistry in about 60 cases of disoxidation were investigated. The expressions of CD40 and Akt expressed in human endothelial cells in regulating angiogenesis and tumor growth, and the potential inhibition of the PI3K/AKT pathway in cancer prevention and therapy, tumorigenesis and angiogenesis.

8

Relationship between β-tubulin mRNA expression and sensitivity to docetaxel in malignant effusions from non small-cell lung cancer (NSCLC) and gastric cancer patients

Baorui Liu
Drum Tower Hospital, Dept of Oncology, Clinical Cancer Institute, Nanjing University, 210008 Nanjing, China

Aim: Despite the success of docetaxel as an anti-tumor agent, the inter-individual variability in drug response still poses a major impediment to the successful use of this agent in the treatment of cancer. Current knowledge about predictive biomarkers of docetaxel sensitivity in malignant effusions is poor. The aim of this study was to investigate the association between β-tubulin III mRNA expression and chemosensitivity to docetaxel in malignant effusions of NSCLC and gastric cancer.

Method: Real-time quantitative PCR was used to analysis β-tubulin III mRNA expression in thirty-seven malignant effusions prospectively collected. Viable tumor cells obtained from malignant effusions were tested for sensitivity to docetaxel using ATP-TCA assay.

Results: β-tubulin III expression level was inversely correlated with sensitivity to docetaxel in pleural effusions of NSCLC patients (P =0.022). Meanwhile, no correlation was found between β-tubulin III mRNA expression and docetaxel sensitivity in malignant effusions of gastric cancer patient (P > 0.05).

Conclusion: It was demonstrated for the first time that low level of β-tubulin III mRNA expression in malignant effusions was associated with chemosensitivity to docetaxel in NSCLC patients in vitro. The data in this study also provided preliminary evidence for using gene expression in malignant effusions as an approach to predict response to docetaxel chemotherapy in the clinic.

9

PRL-3 Expression in Cancer

Xiang Gao
Model Animal Research Center, Nanjing University, 210029 Nanjing, China

PRL-3 is expressed at a high level in cancer metastases. We previously reported that overexpression of PRL-3 in mouse melanoma cells resulted in higher migratory mobility. To investigate substrates and signal transduction pathway of PRL-3, we screened the 17.5-day-old mouse embryo library with the bait of PRL-3 in yeast two-hybrid system. Then we identified CSK (C-terminal Src Kinase), a negative regulatory kinase of SRC family tyrosine kinases, as a PRL-3 interacting protein. This physical interaction was verified with co-immunoprecipitation assays. Furthermore, in the transwell assay, RPL-3 partially blocked the endogenetic CSK ability to decrease the cell migration, and depletion of SRC could entirely reverse the effect of PRL-3 overexpression. The activity SRC is up-regulated in PRL-3 overexpressing cells. Our findings suggest that PRL-3 increases cell mobility by directly exerting its influence on CSK, which consequently resulted in elevated SRC activity.

10

The prognostic value of PRL-3 overexpression in colon cancer and the molecular mechanism of PRL-3 promoting cancer cell metastasis

Chengchao Shou
The Key laboratory of cancer research and its application of educational ministry, Peking university school of oncology, 52 Fucheng Road, 100086 Beijing Haidian

Background: High expression of PRL-3 has been implicated in cancer invasion and metastasis, indicating a close link between PRL-3 and the molecular mechanism of PRL-3 promoting cancer cell metastasis.