Cannabinoid receptors as novel therapeutic targets for the management of non-alcoholic steatohepatitis

A. Mallat*, S. Lotersztajn

Inserm, U841, Créteil, F-94010 France; Université Paris XII-Val-de-Marne, Créteil, 94000 France; Groupe hospitalier Henri Mondor-Albert Chenevier, Service d’Hépatologie et de Gastroentérologie, AP-HP, Créteil, 94000 France.

Abstract

Prevalence of non-alcoholic steatohepatitis (NASH) rises steadily in Western countries with the obesity epidemic. NASH is associated with activation of liver fibrogenesis and predisposes to cirrhosis and associated morbi-mortality. The cannabinoid system is increasingly emerging as a crucial mediator of acute and chronic liver injury. Recent experimental and clinical data indicate that peripheral activation of cannabinoid CB1 receptors promotes insulin resistance and liver steatogenesis, two key steps in the pathogenesis of non-alcoholic fatty liver disease. Moreover, CB1 receptors enhance progression of liver fibrogenesis. These findings provide a strong rationale for the use of CB1 antagonists in the management of NASH.

© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Les récepteurs des cannabinoïdes: de nouvelles cibles thérapeutiques dans la prise en charge de la stéatohépatite non alcoolique

La prévalence de la stéatohépatite non alcoolique est en progression dans les pays occidentaux, parallèlement à celle de l’obésité. La stéatohépatite non alcoolique est associée à une activation des mécanismes de fibrogenèse avec un risque d’évolution cirrhotique et de morbidité significative. Le système cannabinoïde est un médiateur important la physiopathologie des hépatopathies aiguës et chroniques. Des données expérimentales et cliniques récentes indiquent que l’activation des récepteurs CB1 des cannabinoïdes dans les tissus périphériques joue un rôle déterminant dans l’insulinorésistance et la stéatogenèse hépatique, deux étapes clés dans le développement de la stéatopathie métabolique. Les récepteurs CB1 sont également impliqués dans la progression de la fibrose associée aux hépatopathies chroniques. L’ensemble de ces données suggère que les antagonistes du récepteur CB1 des cannabinoïdes pourraient offrir une nouvelle approche thérapeutique au cours de la stéatohépatite non alcoolique.

© 2008 Elsevier Masson SAS. Tous droits réservés.

Keywords: Fatty liver; Non-alcoholic steatohepatitis; Endocannabinoids; Cannabinoid receptors; Liver fibrosis; Review.

Mots clés : Stéatose ; Stéatohépatite non alcoolique ; Endocannabinoïdes ; Récepteurs des cannabinoïdes ; Fibrose hépatique ; Revue générale.
In this context, accumulating experimental and clinical data have stressed the crucial role of the cannabinoid system in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). NAFLD is closely linked to the metabolic syndrome and the obesity epidemic [5], and is currently a rising cause of liver injury, with a 20-30% prevalence in Western countries. The spectrum of the disease ranges from simple steatosis, a condition generally associated with a benign liver outcome, to steatohepatitis, an entity that comprises steatosis, liver inflammation and hepatocellular injury. The latter stage is associated with activation of fibrogenic pathways and carries a 10-20% risk of cirrhosis after 10 or 20 years. As shown in several recent studies, non-alcoholic steatohepatitis (NASH) leads to increased liver-related mortality due to end-stage liver disease or development of hepatocellular carcinoma [6]. The present review summarizes evidence that cannabinoid receptor antagonism may offer novel therapeutic approaches for the management of NAFLD.

1. The endocannabinoid system

The endocannabinoid system comprises endogenous lipid ligands, specific G-protein-coupled receptors (CB1 and CB2), and proteins that are responsible for their biosynthesis, cellular uptake and degradation [7-9].

The CB1 receptor was originally cloned from a rat brain library due to its high level of expression in the central nervous system [10], and subsequent studies have shown its presence at lower levels in many peripheral tissues. Expression of CB2 receptors predominates in the immune system and, although more restricted, is increasingly demonstrated in several cells [8,11,12]. Recent reports also suggest the existence of additional cannabinoid receptors.

Endocannabinoids are hydrophobic fatty-acid-derived compounds with predominantly autocrine/paracrine effects, among which anandamide (arachidonoyl ethanolamide) and 2-arachidonoyl glycerol (2-AG) are the best known. Both compounds are synthesized on demand and are rapidly degraded by fatty-acid amide hydrolase (FAAH) or monoacylglycerol lipase, following ligand binding and cellular reuptake [8,9,11,12]. Anandamide shows a higher affinity for CB1 than CB2 receptors and is therefore considered a major endogenous CB1 ligand, whereas 2-arachidonoyl glycerol binds both receptors with similar affinity [13]. In addition, both compounds also induce CB1- and CB2-independent effects. Lipid mediators other than anandamide and 2-AG have been reported to bind CB receptors, but their biological significance remains undetermined.

2. Modulators of cannabinoid receptors as therapeutic agents

Rimonabant has been the first CB1 antagonist to reach the market in Europe [2-4]. The drug was initially developed for the treatment of obesity in light of the positive impact of phyto- and endocannabinoids on central appetite-regulating pathways. It soon became clear that CB1 antagonism produces metabolic effects beyond those expected from weight loss alone, including improvements in dyslipidemia, insulin resistance and diabetes [14]. In keeping with clinical data, experimental studies have established that multiple peripheral mechanisms contribute to the beneficial effects of CB1 antagonism by enhancing energy expenditure, peripheral lipolysis and insulin sensitivity, among others [15,16]. Accordingly, trials are underway to further define the impact of CB1 antagonism on dyslipidemia, type 2 diabetes and cardiovascular morbidity. Other therapeutic applications under evaluation also include management of alcohol- and nicotine-dependence or neurodegenerative disorders [9]. The safety of CB1 antagonists in obesity has been questioned, given the occurrence of modest rates of anxiety and depression in susceptible individuals [14]. As a result, the FDA denied approval of rimonabant pending additional data, whereas Merck recently suspended the development of taranabant for obesity due to safety concerns. In this context, the development of peripherally restricted CB1 antagonists could prove of interest by avoiding central adverse effects.

Although selective agonists and antagonists of CB2 receptors have not yet reached a clinical stage, preclinical studies nevertheless suggest meaningful therapeutic applications as anti-inflammatory, analgesic or anti-allergenic compounds [9,17]. Of particular interest, such compounds should be devoid of central adverse effects.

Identification of cannabinoid receptors as potential therapeutic targets for the management of liver diseases [7] has emerged recently with the demonstration that CB1 receptors contribute to the pathogenesis of cirrhotic portal hypertension [18,19]. Soon after, additional studies uncovered a key role of cannabinoids in metabolic and ethanol-induced fatty liver, ischemia reperfusion, and in the scarring process associated with chronic liver disease [20-25].

3. Pathogenesis of NAFLD

It is now admitted that metabolic steatosis and insulin resistance are in tight relationship [26]. Thus, rodent models have shown that resistance to insulin promotes lipolysis in adipose tissue, thereby increasing delivery of free fatty acids to the liver [26]. Moreover, in the liver, hyperinsulinemia triggers de novo fatty acid, and impairs β-oxidation and lipid dis-
4. Cannabinoid receptor antagonism reduces development of NAFLD

4.1. CB1 receptors promote metabolic steatosis and insulin resistance

Recent findings have shown that the hepatic cannabinoid system is activated in NAFLD. Thus, in the experimental model of diet-induced obesity, hepatic anandamide levels are increased following inhibition of its degradation by FAAH, and CB1 receptor expression is strongly induced in hepatocytes [23].

Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

CB1 receptor expression is strongly induced in hepatocytes [23]. Accumulating experimental evidence indicates that CB1 receptors contribute to metabolic steatosis and the related insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis [23,24,27].

4.2. CB receptors regulate liver fibrogenesis

As stated previously, transition from steatosis to NASH is associated with activation of fibrogenic pathways and predisposes to the development of liver fibrosis [32]. We recently found that expression of CB1 and CB2 receptors is markedly upregulated in cirrhotic liver samples, predominantly in liver fibrogenic cells, and demonstrated that CB1 and CB2 receptors display potent pro- and antifibrogenic properties, respectively [22,25]. Antifibrogenic properties of CB2 receptors were established in CB2 knockout mice repeatedly exposed to carbon tetrachloride, based on findings that these mice show enhanced liver fibrosis and increased accumulation of liver fibrogenic cells compared with wild-type animals [22]. The function of CB1 receptors in liver fibrogenesis was assessed in three different experimental models (chronic carbon tetrachloride or thiacetamide administration and bile duct ligation). Administration of rimonabant or genetic inactivation of CB1 receptors significantly reduced progression of fibrosis [25]. Profibrogenic properties of CB1 receptors were ascribed to the overactivation of CB1 receptors expressed by liver fibrogenic cells, leading to a combined enhancement of cell proliferation and decrease in apoptosis rate.

The clinical relevance of these experimental findings was confirmed in an epidemiological study of the impact of cannabis use on fibrosis severity in HCV-infected individuals. Daily cannabis use was documented as an independent predictor of fibrosis severity, suggesting that CB1 signaling dominates over CB2 during chronic hepatitis C [33]. A subsequent independent study in a Canadian cohort reported similar findings [34].

5. Emerging role of CB2 receptors in the pathogenesis of NAFLD

Several studies have shown that obesity generates a low-grade inflammatory state that contributes to the development of insulin resistance and NAFLD [35-37]. CB2 receptors are potent regulators of innate immunity [38] and we recently investigated their potential role in the pathogenesis of NAFLD. Compared with wild-type counterparts, mice invalidated for CB1 receptors become resistant to high-fat diet-induced obesity and insulin resistance [23,24,27]. CB1 receptor knockout mice are resistant to high-fat diet (HFD)-induced obesity and steatosis, and to the associated increase in hepatic lipogenesis; moreover, HFD-fed CB1-ablated mice display reduced insulin resistance [23,28]. In keeping, genetically obese fa/fa rats treated with rimonabant show reversal of hepatic steatosis and improved insulin sensitivity [27]. Interestingly, mice bearing a selective deletion of CB1 receptors in hepatocytes become obese under a HFD, but are protected from hepatic steatosis and impaired glucose tolerance [24]. Finally, characterization of functioning of upregulated hepatic CB1 receptors during steatogenesis suggests combined enhancement of lipogenesis and inhibition of fatty acid β-oxidation [23,24]. Collectively, these data indicate that peripheral overactivation of the cannabinoid system promotes obesity-associated fatty liver and insulin resistance. Beyond its contribution to steatogenesis, CB1-dependent endogenous cannabinoid tone may also favor the inflammatory response associated with NASH. Thus, it has been shown that endogenous CB1 activation reduces secretion of adiponectin [29], an adipocytokine with potent anti-inflammatory effects in the liver [30]. In keeping with these observations, administration of rimonabant to genetically obese rats induces a significant improvement in the hepatic inflammatory response [27].

Clinical studies also indirectly support the potential role of endocannabinoids and their receptors in the pathogenesis NAFLD. Analysis of pooled 1-year data from four pivotal trials in overweight patients indicates that rimonabant reduces alanine aminotransferase levels, a marker of NAFLD [14]. In addition, we recently investigated the impact of cannabis use on steatosis grade in 307 patients with chronic hepatitis C and found that daily cannabis consumption is an independent predictor of severe steatosis [31]. Overall, these results provide strong evidence for a steatogenic role of cannabinoids in humans.
Moreover, CB2 knockout mice are resistant to steatosis and display improved glucose tolerance. The mechanism underly-
ing steatogenic effects of CB2 receptors appears to involve proinflammatory effects of upregulated CB2 receptors in adi-
posite tissue.

6. Conclusion

Accumulating data indicate that the endocannabinoid sys-
tem is upregulated in NAFLD and plays an important role in the pathogenesis of steatosis and insulin resistance via peripheral pathways. CB1 antagonism has proven efficient in the control of experimental NAFLD and liver fibrogenesis. Recent clinical trials have also established that inactivation of CB1 recep-
tors not only reduces overweight, but also improves several parameters of the metabolic syndrome, including insulin resist-
tance and dyslipidemia [14]. These observations undoubtedly provide a strong rationale for the evaluation of CB1 antago-
nists in the management of NASH, as currently underway in phase III clinical trials. Concern over potential adverse central effects of CB1 antagonists should stimulate ongoing efforts to develop peripheral restricted molecules.

Conflicts of interest: A. Mallat: Occasional involvements: advisory services (Sanofi-Aventis); Close relatives employed by Sanofi-Aventis. S. Lotersztajn: none.

References

[2] Despres JP, Golya A, Sjostrom L. Effects of rimonabant on metabo-
[3] Pr-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and car-
diometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006;295:761-75.
[4] Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduc-
[6] Ratziu V, Poynard T. Assessing the outcome of nonalcoholic steato-
cacy and safety of rimonabant for improvement of multiple cardio-
[16] Ros J, Blanm J, To-Figueras J, Planaguma A, Cejudo-Martin P, Fern-
andez-Varo G, et al. Endogenous cannabinoids: a new system invol-
[17] Batkai S, Osei-Hyiaman D, Pan H, El-Assal O, Rajesh M, Mukho-
derived endocannabinoids mediates alcoholic fatty liver. Cell Metab 2008;7:227-35.
duced steatosis, dyslipidemia, and insulin and leptin resist-
[23] Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engi-
Trillou C, et al. Rimonabant reduces obesity-associated hepatic stea-
vived hormone adiponectin alleviates alcoholic and nonalcoholic fatty 

A, Bouvier-Alias M, et al. Daily cannabis use as a novel risk factor of 
steatosis severity in patients with chronic hepatitis C. Gastroentero-

[32] Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P, Mallat A. Hepa-
tic fibrosis: molecular mechanisms and drug targets. Annu Rev Phar-

ES, et al. Daily cannabis smoking as a risk factor for progression of 

Influence of cannabis use on severity of hepatitis C disease. Clin 

[35] Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insu-


MCP-1 contributes to macrophage infiltration into adipose tissue, 
insulin resistance, and hepatic steatosis in obesity. J Clin Invest 
2006;116:1494-505.

[38] Klein TW. Cannabinoid-based drugs as anti-inflammatory therapeu-

Nhieu J, Karsak M, et al. CB2 receptor antagonism reduces diet-
induced obesity, insulin resistance and hepatic steatosis. Hepato-
logy 2007;46:308A.