REVIEW

Genetics and embryological mechanisms of congenital heart diseases

Génétique et mécanismes embryologiques des cardiopathies congénitales

Fanny Bajollea, Stéphane Zaffranb, Damien Bonneta,*

a Malformations cardiaques congénitales complexes (M3C), Reference Centre, Department of Paediatric Cardiology, hôpital Necker—Enfants-Malades, AP—HP, université Paris-V, 149, rue de Sèvres, 75015 Paris, France

b CNRS UMR 6216, Institut de biologie du développement de Marseille-Luminy, campus de Luminy, 13009 Marseille, France

Received 30 April 2008; received in revised form 10 June 2008; accepted 19 June 2008

Available online 4 December 2008

KEYWORDS
Congenital heart diseases; Genetics; Cardiogenesis

Summary Developmental genetics of congenital heart diseases has evolved from analysis of embryo sections towards molecular genetics of cardiac morphogenesis with a dynamic view of cardiac development. Lineage analysis, transgenic animal models and retrospective clonal analysis of the developing heart led to identification of different cardiac lineages and their respective roles. Genetics of congenital heart diseases has also changed from formal genetic analysis of familial recurrences or population based analysis to screening for mutations in candidates genes identified in animal models. Based on these new concepts, genetic counselling in congenital heart diseases is based on the mechanism of a given heart defect rather than on its anatomy. Using this approach, genetic heterogeneity or intrafamilial variability of a molecular anomaly can at least be partially explained. Close cooperation between molecular embryologists, pathologists involved in heart development and paediatric cardiologists is crucial for further increase of knowledge in the field of cardiac morphogenesis and genetics of cardiac defects.

© 2008 Elsevier Masson SAS. All rights reserved.
The cellular contingent for the future left ventricle [3]. This comes from the primitive embryonic heart and exclusively supplies materially to the primitive linear cardiac tube. The latter derives predefined outcome is erroneous. Today, it is asserted that the notion of a primitive cardiac tube cut into segments with a developmental concept based on the "segmentation" of the embryonic heart is far from suitable. In other words, the development concept based on the "segmentation" of the embryonic heart exclusively provides the precursors for the left ventricle and the cells from both lineages contribute to the formation of the atria and the right ventricle. The efferent pathway derives exclusively from the second cardiac field. We now know that the embryonic heart exclusively provides the precursors for the left ventricle and the second lineage derives from an additional "cardiac" area called the "second cardiac field". We now know that the embryonic heart exclusively provides the precursors for the left ventricle and the cells from both lineages contribute to the formation of the atria and the right ventricle. The efferent pathway derives exclusively from the second cardiac field [4].

Structure of the primitive cardiac tube

The cardiac tube, connected to the embryo by the dorsal cardiac mesoderm, has a symmetrical structure and it is the addition of cells to its caudal end (venous pole) and cranial end (arterial pole or efferent pathway) which leads to its elongation. This cellular addition participates to this elongation and to the curved movement of the tube called "looping". This asymmetrical curve enables to create the structure of four chambers and the arterial and venous poles. The cardiac chambers (atria and ventricles) then mature through a ballooning process, symmetrically for the atria but sequentially for the ventricles. It is this sequential phenomenon for the ventricles that produces the primitive interventricular foramen (the initial septum) [5].

Formation of the efferent pathway

Development of the efferent pathway is a complex phenomenon that involves the cells of the neural crest, the endocardium and the underlying myocardium. Several simultaneous and intricate events occur, including the epithelio-mesenchymal transformation of the endocardium to form the endocardial cushions, the colonisation of the extracellular matrix by the neural crest cells providing the aortopulmonary septation, and finally the rotation of the myocardium from the base of the efferent pathway to bring the vessels in line with their respective ventricle (wedging) [6].

How do these new concepts translate into practice?

To understand how this cognitive research on the cardiac morphogenesis is integrated into paediatric cardiac practice at all stages of life, it is necessary to briefly touch upon the history of cardiac genetics and embryology (Table 1).

Genetic background and environment

In the 1980s, the recurrence of congenital heart diseases within the same family and the different anatomical phenotypes in the affected individuals led to Nora's hypothesis of multifactorial inheritance of congenital heart diseases.
The recurrence was explained by a risk related to “genetic background” and the environment shared within the same family [7].

One molecular abnormality—one mechanism—one group of heterogeneous heart diseases

Experiences including the ablation of the neural crest cells in chick embryos, the use of quail-chick chimeric models and then the use of “genetic” ablation models of neural crest cells gave rise to the hypothesis that a disturbed embryonic mechanism in cardiac development could produce anatomically different cardiac phenotypes that were embryological related [8]. The example of heart disease observed in the deletion of chromosome 22q1.1 confirms this concept in humans. Indeed, the children with this cytogenetic abnormality have a heart disease that still involves the efferent pathway or the aortic arches [9]. This concept is expressed in the following way: one molecular abnormality—one mechanism—one group of heart diseases that is potentially heterogeneous anatomically but homogeneous in terms of embryological mechanism.

Haemodynamic mechanisms of congenital heart diseases

The notion of a phenotype continuum is subtly different from the previous item. The example is that of obstructive heart diseases of the left side heart. Since Abraham Rudolph, it is commonly admitted that the development of heart chambers and resulting vessels is related to the pattern of the combined foetal blood flow that passes through them. Thus, a reduction in flow in the left heart may lead to coarctation, at one end of the spectrum, and to hypoplasia of the left heart, at the other end [10]. The idea that these heart diseases belonged to a same embryological group has been perfectly demonstrated through several arguments, namely recurrences of different severity within the same family, prenatal progression of obstructive left heart diseases, and finally identification of the same mutation in NOPCH1 in patients of the same family with a different cardiac phenotype [11]. Recently, a study conducted in zebrafish confirmed the relationship between the quality of the intracardiac blood flow and the future morphology of the heart [12].

Mechanistic classification of congenital heart diseases

The segmental view of congenital heart diseases, while remaining essential during echocardiography analysis, simplifies the embryological and molecular approach. The use of a mechanistic classification proposed by Clark [13] has clarified things and many attitudes are today based on this: indication for screening of 22q1.1 the deletion in conotruncal heart diseases, coherent analysis of recurrences of congenital heart diseases within families, identification of new genes of congenital heart diseases, etc.

One heart disease—several genes

A great heterogeneity observed in each congenital heart disease group has made the situation more complex, but it has also enabled the analysis of phenotype and genotype relationships for these malformations. Again, the concept is still reflected in daily practice: differential phenotype of atrioventricular canals in relation to the karyotype or their anatomy thereby offering a quick indication of syndrome [14], complexity of the anatomy of pulmonary revascularisation in pulmonary atresia with interventricular communication in relation to their association with deletion.

Table 1 Conceptual evolution of the genetics of congenital heart diseases.

<table>
<thead>
<tr>
<th>Concepts</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multifactorial inheritance</td>
<td>All heart diseases</td>
</tr>
<tr>
<td>Major role of the environment</td>
<td>Teratogenic: rubella, thalidomide</td>
</tr>
<tr>
<td>Unique mechanism</td>
<td>Deletion of chromosome 22q1.1 and conotruncal heart diseases</td>
</tr>
<tr>
<td>of anatomically different heart disease</td>
<td></td>
</tr>
<tr>
<td>One genetic abnormality—several heart diseases</td>
<td></td>
</tr>
<tr>
<td>Monogenic nature of many heart diseases</td>
<td>Interatrial communication, atrioventricular canals, tetralogy of Fallot</td>
</tr>
<tr>
<td>Failure of strategies of partial phenocopy:</td>
<td>Interatrial communication and Holt-Oram syndrome (TBX5), tetralogy of Fallot</td>
</tr>
<tr>
<td>genetically different syndrome and non-syndrome associated heart diseases</td>
<td>and deletion of chromosome 22q1.1, atrioventricular canals and critical cardiac region of trisomy 21</td>
</tr>
<tr>
<td>Notion of phenotype continuum or gravity spectrum</td>
<td>Bicuspid aortic valve, aortic stenosis and coarctation, Shone syndrome, hypoplasia of left heart</td>
</tr>
<tr>
<td>Variability of intrafamilial expression for a same molecular abnormality</td>
<td>Familial heart diseases of deletion of chromosome 22q1.1</td>
</tr>
<tr>
<td>Genetic heterogeneity of congenital heart diseases: one malformation—several genes</td>
<td>Interatrial communication and mutations in NKK2.5, GATA4, MYH7</td>
</tr>
<tr>
<td>Heterogeneity of mechanisms for a same heart disease</td>
<td>Common arterial trunk: septation disease of the efferent pathway or of myocardium rotation from the base of the efferent pathway</td>
</tr>
<tr>
<td>Redefinition of the phenotype in relation to the mechanism</td>
<td>Double outlet right ventricles</td>
</tr>
</tbody>
</table>

Genetics and embryological mechanisms of congenital heart diseases
The “clinical translation” of this cognitive progress is significant. It can be summarised in several points. The description of the cardiac phenotype must be anatomically accurate. It must use the segmental classification, while indicating every anatomical detail that would offer guidance on the mechanism of the heart disease. It is only at this price that a suitable genetic advice may be given.
Certain cardiac malformations are development sequences or algorithms with a highly complex anatomical outcome (cardiac isomerisms), but they are actually simple since all elements of the heart disease derive from a same morphogenetic defect. The role of the clinician is to recognise these sequences so as to describe each step. Certain heart diseases fall within a gravity spectrum such as coarctation of the aorta and hypoplastic left heart syndrome. Knowing how to look for staggered abnormalities of the left track in this group and understanding the progressive nature of these heart diseases that are dependent at least in part upon foetal cardiac flow is essential for screening prenatal and postnatal worsening conditions. Certain heart diseases may be considered as "lures" on the embryological front since they correspond to the anatomical expression of another abnormality. We can cite here the example of the coarctation associated with the persistent left upper vena cava which disturbs the mitral flow during the foetal life. The coarctation here is only the translation of a congenital abnormality to the systemic venous return and not an actual disease of the aorta.

Conclusion

We deliberately chose not to list the many genes known in congenital heart diseases. This type of information was recently published [20,21]. Far from being esoteric, knowledge of normal cardiac development and the mechanisms of congenital heart diseases are essential to daily practice, as much for the daily examination of heart diseases as for genetic counselling before birth or in the case of familial forms.

References