Objectives. – To assess interexaminer agreement in a structured, manual, clinical examination of the neck. To correlate these data with the score in a functional questionnaire (a validated, French-language version of the neck pain and disability scale).

Patients. – Fifty-nine ambulatory patients (26 males and 33 females, mean ± SD age: 46.3 ± 12 yrs) with common neck pain but no radiation below the elbow.

Methods. – Two medical practitioners (a junior and a senior consultant) assessed neck rotation (in degrees) and the presence of pain during maximum neck flexion and extension, muscle palpation (trapezius, levator scapulae, splenius cervicis, semispinalis) and cervical spine palpation. Cohen’s kappa coefficient was calculated for qualitative variables. Angular rotational values (as a continuous variable) were compared using the p coefficient. Pearson coefficient was used to correlate the number of tender spots to the results of the questionnaire.

Results. – There was no significant interexaminer difference ($\pm 10^\circ$) in the neck rotation measurement. Kappa was (i) 0.71 and 0.76 for pain in flexion or extension, respectively, (ii) 0.44 on average for palpation of various muscles and (iii) 0.53 on average for cervical spine palpation. The number of tender spots correlated strongly with the questionnaire score ($r = 0.35, p = 0.007$).

Conclusion. – The interexaminer agreement for our clinical examination was moderate. The number of tender spots correlated strongly with the functional impairment. Pain at the lower attachment of the levator scapulae was associated with dysfunction of the median or upper cervical spine.

© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Objectifs. – Évaluer la reproductibilité interobservateur d’un examen clinique structuré du cou. Confronter les données obtenues au questionnaire « indice de douleurs et d’incapacité cervicale » (Indic).

Patients. – Cinquante-neuf patients ambulatoires avec cervicalgie commune sans irradiation au-delà du coude. Il s’agissait de 26 hommes et 33 femmes, d’âge 46,3 ± 12 ans.

Méthode. – Deux médecins (un junior, un senior) ont évalué la rotation (en degrés) et la présence d’une douleur en flexion ou extension du cou, à la palpation des muscles (trapèze, levator scapulae, splenius cervicis, semispinalis) et à la palpation du rachis cervical. Le coefficient kappa de Cohen a été calculé pour les variables discontinues. Les valeurs angulaires de rotation, continues, ont été comparées avec calcul du coefficient p. Le coefficient de Pearson a été utilisé pour corrélérer le nombre de sites douloureux à l’Indic.

Résultats. – Il n’y avait pas de différence significative dans la mesure des rotations cervicales par les deux examineurs, à 10° près. Le coefficient kappa était de 0,71 et 0,76 pour la douleur en flexion ou extension, de 0,44 en moyenne pour la palpation des muscles et de 0,53 pour la palpation du rachis. Le nombre de sites douloureux était corrélé au score du questionnaire (coefficient de Pearson : 0,35, $p = 0,007$)
1. English version

1.1. Introduction

Clinical examination of the cervical spine is a prerequisite for the management of neck pain, on both the exploratory and therapeutic levels. However, this type of examination is far from having been standardized and varies according to the examiner’s training. Physicians, osteopaths, chiropractors and physiotherapists do not use the same manoeuvres and sometimes seek to measure very different data. Moreover, the agreement of these various manoeuvres is poorly documented in the literature; studies on this theme are very rare, often patchy and only consider one particular aspect of this problem. In fact, a highly reproducible investigational manoeuvre is prerequisite for assessment of its validity, that is to say, its true significance and utility. Here, we decided to study the interexaminer agreement for the cervical spine examination described by R. Maigne [9] and modified by J.-Y. Maigne [8] (such as we routinely apply in manual medicine) and to compare our results with those in the literature.

1.2. Materials and methods

The study population consisted of a consecutive series of patients suffering from acute or chronic common neck pain and attending an initial consultation in our hospital’s physical medicine department. The inclusion conditions were as follows. The pain over the previous 24 hours had to exceed a score of at least 4 cm on a 0 to 10 cm visual analogue scale (VAS). The pain had to be predominantly in the neck; it could radiate to the head, towards the upper back or towards the arm without, however, extending below the elbow. We excluded patients suffering from cervical radiculopathy with pain below the elbow, upper back pain, shoulder blade pain or a headache in the absence of associated neck pain. Likewise, we excluded subjects whose command of the French language was poor, subjects having suffered a workplace accident, those involved in a legal dispute and those having undergone neck surgery.

After having given their verbal agreement, patients were examined on inclusion and before a full, rigorous interview by one of two examiners (chosen in a predetermined, random order). The second examiner left the room during the initial examination and was not allowed to talk to the other examiner or discuss matters with the patient. In the second examination, the patient latter was instructed to give a “yes” or “no” answer during the pain provocation manoeuvres, without reference to the previous examination. The senior examiner had 25 years’ experience in manual medicine. The junior examiner was being trained in this discipline. The study lasted 12 months (from May 2006 to May 2007) and was preceded by a 15-patient pilot series (in order to homogenize the examination technique).

1.2.1. The clinical examination

The examination protocol was that used routinely in our department. The examiner stands behind the seated patient, records the cervical right and left rotational mobility in degrees, determines the most restricted side and then seeks to establish the presence or absence of pain during maximal flexion and extension. The patient’s upper body is maintained firmly against the examiner’s thorax and the T1 spinous process is blocked by the examiner’s thumb during the rotational movements, to ensure that only the neck moves. The examiner also has to ensure that flexion and extension are truly maximal. Four muscle groups are then palpated (on both body sides) in order to identify any tender muscle spots or taut band: the upper, median and lower cervical portions of the semispinalis, the levator scapulae (at its point of insertion into the superomedial angle of the scapula), the splenius cervicis (at its point of insertion into the lateral face of the T4 spinous process) and the trapezius (in the thicker part of the cervicoscapular angle) muscles.

The patient is then invited to lie down in the supine position. The examiner stands by the patient’s head, flexes the neck and looks for greater segmental sensitivity in the paravertebral groove than in other areas. Lastly, he/she seeks to determine the source of this accentuated sensitivity, relative to bone markers (the C2 and C7 spinous processes). This could potentially be the upper (C1–3), median (C3–5) or lower (C5–7) cervical regions. The results are recorded on a form. For the painful areas, the score is 0 (no pain) or 1 (pain), with no intermediate rating. A total pain score of up to 20 points is thus obtained (2 points for the flexion or extension pain and 18 points for palpation).

1.2.2. Questionnaire

At the end of the consultation, the patients filled out the 20-item “Indice de douleur et d’incapacité cervicale” questionnaire (INDIC, a validated French-language version of the neck pain and disability scale) [15]. This questionnaire evaluates the pain’s intensity in various situations (5 items), its physical impairment of neck movements (5 items) and its impact on various social and professional activities (7 items). The last three items yield an emotional and cognitive dimension. The final questionnaire score was compared with the total pain score.

1.2.3. Statistics

Cohen’s kappa coefficient was used to calculate the interexaminer agreement when the response was binary (i.e.
pain or no pain). This coefficient helps eliminate the effect of potential chance agreement. When the observed agreement is identical, its value varies according to the population size and whether or not the presence of the sign is balanced. Kappa values greater than 0.4 are considered to represent at least moderate agreement. In order to analyze the relationship between continuous variables (such as the number of tender spots found by the senior examiner on one hand and the questionnaire score on the other), we used Pearson’s correlation coefficient r.

1.3. Results

Fifty-nine patients (33 women and 26 men) were included in the study. The mean ± S.D. age was 46.3 ± 12 years (range: 25 to 79).

1.3.1. Neck mobility

Right or left rotation was normal or slightly restricted (over 70°) in 37 patients, moderately restricted (70° to 50°) in 11 and severely restricted (less than 50°) in another 11. If one considers agreement as two measurements differing by 10° at most, there was no significant difference between the two examiners’ measurements ($p = 0.805$ and 0.451 for right and left rotations, respectively).

Agreement for determination of the body side on which rotation was the most restricted and for the presence of pain during flexion or extension was also evaluated (Table 1). Regarding the most restricted side, there were 16 cases of interexaminer disagreement but the measurement difference was below 10° in 14 of these.

1.3.2. Sensitivity of muscles or their insertions

Kappa varied between 0.33 and 0.62 (fair to substantial agreement). The mean kappa was 0.44 (confidence interval: 0.19–0.68), i.e., moderate agreement. The results are given in Table 2.

1.3.3. Segmental examination

The goal of this examination was to determine the most tender segment, independently of the sensitivity of other segments. In ten cases, the entire cervical spine was sensitive to palpation (on the right or left side or both) and thus prevented any one segment from being designated as more painful than the others. The upper (C1–3), median (C3–5) and lower (C5–7) cervical areas were most painful in 22, 19 and eight cases, respectively. The mean kappa for the cervical spine segmental examination was 0.53 (confidence interval: 0.31–0.73).

<table>
<thead>
<tr>
<th>Side with the most restricted rotation</th>
<th>Prevalence</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 on the left, 15 on the right</td>
<td></td>
<td>0.57</td>
</tr>
<tr>
<td>Pain in flexion</td>
<td>15</td>
<td>0.71</td>
</tr>
<tr>
<td>Pain in extension</td>
<td>34</td>
<td>0.76</td>
</tr>
</tbody>
</table>

* According to the senior examiner.

1.4. Discussion

The present study was prompted by the quality criteria selected in the meta-analysis by Seffinger et al. [13]. Our sample size was similar to the literature average and just largely exceeded the reference number of 30 subjects. Three potential sources of bias should be mentioned. The first is potential sensitization of patients after the first examination, with a possibly more painful second examination and/or erroneous responses. In fact, the total pain scores for the first and second examinations were comparable ($p = 0.8$) and thus, there was no modification due to the dual examination. The second potential bias relates to the fact that one of the examiners was a physician undergoing training in manual medicine. His lack of experience could have altered the results. However, we first worked on a pilot series in order to correct and harmonise our examination techniques and 15 patients were probably enough for this purpose. Furthermore, the junior examiner’s lack of experience may even have made him more likely to objectively report what he had observed, without trying to minimize or exaggerate the results according to what would have been expected from theory. The third potential source of bias concerns the difficulty that patients had in simply answering “yes” or “no” to the question “does it hurt when I apply pressure here?” when the pain was mild. This difficulty is likely to reduce the size of the kappa coefficient. One solution would be to use a VAS to evaluate the pain provoked; however, Pool et al. have shown that the patients are not able to reliably quantify the same pain provoked in two examinations with a 15-minute interval [10].

There are few literature studies investigating interexaminer agreement for examination of the spine and cervical soft tissues...
and even fewer concerning segmental examination. Hubka and Phelan [6] examined 30 patients level by level while looking for cervical spine tenderness but all the subjects had strictly unilateral, mechanical neck pain and were examined only on the spontaneously painful side – which would have somewhat improved the examination’s performance. These authors’ kappa of 0.68 (substantial agreement; confidence interval: 0.47–0.89) was slightly higher than ours (0.53, moderate agreement; confidence interval: 0.31–0.73). Like us, Van Suijlekom et al. classified the most sensitive level into three groups (the upper, median or lower cervical spine). Their kappa values ranged from 0.2 to 0.6 (fair to moderate agreement).

Lastly, Cleland et al. followed a slightly different protocol because the segmental pain was identified by testing mobility vertebra per vertebra rather than by application of pressure [3]. The kappa was below 0.27 (fair), except for C6 and C7 (0.55 and 0.90, respectively). There are only slightly more publications concerning the agreement of the examination of muscles or their insertions [7,1]. The trapezius and levator scapulae muscles were examined but neither the splenius cervicis nor the entire length of the semispinalis muscles were assessed. These results are given in Table 4. One can note that the degree of agreement ranges from fair to moderate. Our results are less good than those from Andersen and Gaardboe but their study mainly recruited fibromyalgia patients. There are a few more studies on the degree of agreement for cervical mobility measurement but the work was performed under different conditions, such as with a goniometer or by studying active mobility or segmentally (level by level). Youdas et al. noted poor agreement (by using intra-class correlation coefficients) when mobility was evaluated visually [16]. In contrast, Hoppenbrouwers et al. [5] found a kappa of 0.54 (moderate agreement), Fjellner et al.’s [4] kappa values were between 0.41 and 0.6 (moderate agreement) and Pool et al.’s values ranged from 0.05 to 0.61 (from slight to substantial agreement) [10]. Our method of calculation (p value) does not facilitate comparison with other studies but we did obtain a kappa of 0.57 (moderate agreement) for determination of the side on which rotation was most restricted. There again, we noticed the two examiners’ difficulty in agreeing when the rotation difference was less than 10°. Regarding pain in flexion or extension, one can compare the literature values of 0.53 and 0.67 [14] and 0.55 and 0.23 [3] with our data of 0.71 and 0.76 (substantial agreement), respectively.

The overall interexaminer agreement for our clinical neck examination was moderate (with a kappa > 0.4) and encourages us to continue to use the procedure on a routine basis and to teach it. Only the rotational mobility measurement and the

Table 2

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Prevalence (%)</th>
<th>Observed agreement (%)</th>
<th>Corrected agreement (kappa)</th>
<th>Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left trapezius</td>
<td>23.7</td>
<td>79.7</td>
<td>0.44</td>
<td>0.17–0.71</td>
</tr>
<tr>
<td>Right trapezius</td>
<td>42.4</td>
<td>78</td>
<td>0.52</td>
<td>0.31–0.74</td>
</tr>
<tr>
<td>Left splenius</td>
<td>39</td>
<td>69.5</td>
<td>0.39</td>
<td>0.17–0.62</td>
</tr>
<tr>
<td>Right splenius</td>
<td>39</td>
<td>83.1</td>
<td>0.62</td>
<td>0.42–0.82</td>
</tr>
<tr>
<td>Left levator scapulae</td>
<td>40.7</td>
<td>74.6</td>
<td>0.46</td>
<td>0.23–0.69</td>
</tr>
<tr>
<td>Right levator scapulae</td>
<td>35.6</td>
<td>69.5</td>
<td>0.36</td>
<td>0.12–0.60</td>
</tr>
<tr>
<td>Left upper semispinalis</td>
<td>20.3</td>
<td>81.4</td>
<td>0.37</td>
<td>0.07–0.66</td>
</tr>
<tr>
<td>Right upper semispinalis</td>
<td>23.7</td>
<td>78.0</td>
<td>0.34</td>
<td>0.06–0.63</td>
</tr>
<tr>
<td>Left median semispinalis</td>
<td>40.7</td>
<td>67.8</td>
<td>0.33</td>
<td>0.08–0.57</td>
</tr>
<tr>
<td>Right median semispinalis</td>
<td>42.4</td>
<td>74.6</td>
<td>0.48</td>
<td>0.25–0.70</td>
</tr>
<tr>
<td>Left lower semispinalis</td>
<td>25.4</td>
<td>79.7</td>
<td>0.46</td>
<td>0.21–0.72</td>
</tr>
<tr>
<td>Right lower semispinalis</td>
<td>28.8</td>
<td>77.3</td>
<td>0.45</td>
<td>0.23–0.70</td>
</tr>
</tbody>
</table>

* According to the senior examiner.

Table 3

<table>
<thead>
<tr>
<th>Level</th>
<th>Prevalence (%)</th>
<th>Observed agreement (%)</th>
<th>Corrected agreement (kappa)</th>
<th>Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left C1-C2-C3</td>
<td>14.3</td>
<td>83.1</td>
<td>0.65</td>
<td>0.46–0.85</td>
</tr>
<tr>
<td>Right C1-C2-C3</td>
<td>24.5</td>
<td>76.3</td>
<td>0.53</td>
<td>0.31–0.74</td>
</tr>
<tr>
<td>Left C3-C4-C5</td>
<td>18.4</td>
<td>83.1</td>
<td>0.66</td>
<td>0.47–0.85</td>
</tr>
<tr>
<td>Right C3-C4-C5</td>
<td>20.5</td>
<td>62.7</td>
<td>0.32</td>
<td>0.13–0.50</td>
</tr>
<tr>
<td>Left C5-C6-C7</td>
<td>1.3</td>
<td>7.5</td>
<td>0.60</td>
<td>0.35–0.80</td>
</tr>
<tr>
<td>Right C5-C6-C7</td>
<td>8.1</td>
<td>72.9</td>
<td>0.41</td>
<td>0.19–0.64</td>
</tr>
</tbody>
</table>

* According to the senior examiner.

Table 4

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Levoska et al.</th>
<th>Andersen and Gaardboe</th>
<th>The present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left trapezius</td>
<td>0.15</td>
<td>0.78</td>
<td>0.44</td>
</tr>
<tr>
<td>Right trapezius</td>
<td>0.22</td>
<td>0.72</td>
<td>0.53</td>
</tr>
<tr>
<td>Left upper semispinalis</td>
<td>–</td>
<td>0.67</td>
<td>0.37</td>
</tr>
<tr>
<td>Right upper semispinalis</td>
<td>–</td>
<td>0.71</td>
<td>0.34</td>
</tr>
<tr>
<td>Left levator scapulae</td>
<td>0.42</td>
<td>0.71</td>
<td>0.46</td>
</tr>
<tr>
<td>Right levator scapulae</td>
<td>0.52</td>
<td>0.58</td>
<td>0.36</td>
</tr>
</tbody>
</table>
pain identification during flexion or extension showed a strong degree of agreement. This indicates that future studies on validation of this clinical examination should focus on the latter parameters. In fact, as emphasized by Bogduk and McGuirk, none of the manoeuvres that we evaluated here has been validated. The true significance of mobility anomalies or muscle tenderness is not known [2]. It is also not known whether a positive segmental examination corresponds to a vertebral element (the facet joint, the disc or the periosteum) or to the overlying muscles.

We also made two other interesting findings. For the trapezius and the splenius cervicis muscles, the presence of abnormal muscle sensitivity did not correspond to a precise cervical level. In contrast, sensitivity of the levator scapulae muscle was associated with pain in the median or upper cervical spine but not its lower segment. The second finding relates to the presence of a correlation between the number of tender spots and the INDIC questionnaire score; the higher the number of tender spots, the greater the functional impairment. Two studies have already noted that the presence of a tender spot in palpation of the cervical facet joint enables relatively good differentiation between neck pain sufferers and healthy subjects when the two groups are formed on the basis of functional questionnaire scores [11,12]. Our results are in line with this previous work but provide a new and significant element – that clinical examination alone enables the physician to judge the extent of the functional impairment.

1.5. Conclusion

Our routine neck examination displayed moderate inter-examiner agreement, although this does not necessary imply that the technique is valid. The presence of pain at the insertion of the levator scapulae muscle is associated with moderate to intense neck pain. The number of tender spots reflects the functional impairment experienced by the patient.

2. Version française

2.1. Introduction

L'examen clinique du rachis cervical constitue le préalable à la prise en charge d'une cervicalgie, tant au plan des explorations complémentaires que de la thérapeutique. Cet examen, loin d'être standardisé, varie selon la formation de l'examineur. Médecins, ostéopathes, chiropracteurs et kinésithérapeutes n’utilisent pas les mêmes manœuvres et recherchent parfois des données très différentes. De plus, la reproductibilité de ces différentes manœuvres est mal documentée dans la littérature et les études sur ce thème sont très rares et souvent parcellaires, n’envoyant qu’un aspect particulier de la question. Or, la bonne reproductibilité d’une manœuvre d’examen est le préalable indispensable à l’étude de sa validité, c’est-à-dire de sa signification réelle et de son utilité. Nous avons choisi d’étudier la reproductibilité interobservateur de l’examen du rachis cervical décrit par R. Maigne [9] et modifié par J.-Y. Maigne [8], tel que nous l’utilisons en « médecine manuelle ostéopathie » et de comparer nos résultats à ceux de la littérature.

2.2. Matériel et méthode

L'échantillon étudié était constitué d’une série consécutive de patients souffrant de cervicalgie commune aiguë ou chronique et se présentant pour une première consultation dans le service de médecine physique de notre hôpital. Les conditions d’inclusion étaient les suivantes. La douleur des dernières 24 heures devait être chiffrée à au moins 4 cm sur une échelle visuelle analogique (EVA) graduée de 0 à 10 cm. La douleur devait prédominer au cou. Elle pouvait irradiée à la tête, vers le haut du dos ou vers le bras sans toutefois dépasser le coude. Ont été exclus les patients souffrant d’une névralgie cervico-brachiale avec douleur dépassant le coude, d’une dorsalgie, d’une scapulalgie ou d’une céphalée sans douleur de coup associée. De même, nous avons exclu ceux ne maîtrisant pas suffisamment la langue française, les sujets en accident de travail, ceux impliqués dans un conflit médicolégal et ceux ayant un antécédent chirurgical cervical.

Après avoir obtenu leur accord oral, les patients étaient examinés dès leur inclusion et avant même un interrogatoire plus complet, par deux examinateurs intervenant dans un ordre aléatoire préalablement déterminé. Le second examinateur quittait la pièce lors du premier examen. Aucune discussion n’était permise entre eux ni avec le patient. Ce dernier était invité à répondre par oui ou par non aux manœuvres de provocation de la douleur, sans référence à l’examen précédent. L’examineur senior avait une expérience de 25 ans en médecine manuelle. Le junior était en cours de formation dans cette discipline. L’étude a duré 12 mois (mai 2006 à mai 2007) et a été précédée d’une série pilote de 15 patients pour homogénéiser les techniques d’examen.

2.2.1. Examen clinique

Notre protocole d’examen était celui que nous utilisons en routine. Il comportait d’abord sur un patient assis, examineur derrière lui, une mesure de la mobilité cervicale en rotation droite et gauche chiffrée en degrés, la détermination du côté le plus limité puis la recherche d’une douleur en flexion et en extension maximale (présente ou absente). Le buste était fermement maintenu contre le thorax de l’examineur et l’épineuse de T1 bloquée par le pouce dans les mouvements de rotation, afin de s’assurer d’un mouvement purement cervical. L’examineur devait aussi s’assurer que la flexion et l’extension étaient poussées au maximum d’amplitude. Quatre groupes musculaires étaient ensuite palpés (de façon bilatérale) à la recherche de points ou de cordons musculaires douloureux : le semispinalis dans ses portions cervicales supérieure, moyenne et inférieure, le levator scapulae à son insertion sur l’angle supéromédial de la scapula, le splenius du cou (splenius cervicis) à son insertion sur la face latérale de l’épineuse de T4 et le trapèze dans sa partie charnue de l’angle cervicoscapulaire.

Le patient était ensuite invité à s’allonger sur le dos, l’examineur se plaçant à sa tête, lui fléchissant le cou et...
2.3. Résultats

Cinquante neuf patients (33 femmes et 26 hommes) furent inclus. L’âge moyen était de 46,3 ± 12 ans (extrêmes : 25 et 79 ans).

2.3.1. Mobilité cervicale

La rotation droite ou gauche était normale ou modérément limitée (plus de 70°) chez 37 patients, moyennement limitée (70° à 50°) chez 11 et sévèrement limitée (moins de 50°) chez 11 autres. Si l’on considère concordante sa mesure à ± 10°, il n’y avait pas de différence significative entre les deux observateurs (p = 0,805 et 0,451 pour les rotations droite et gauche respectivement).

L’appréciation du côté où la rotation est la plus limitée, la présence d’une douleur à la flexion ou à l’extension ont aussi été évaluées (Tableau 1). En ce qui concerne le côté le plus limité, il y eu 16 cas de discordance interexaminateur, mais la différence de mesure était inférieure à 10° dans 14 cas.

2.3.2. Sensibilité des muscles ou de leurs insertions

Kappa variait entre 0,33 et 0,62 (concordance de passable à bonne). Le kappa moyen était de 0,44 (intervalle de confiance : 0,19–0,68), soit une concordance acceptable. Les résultats sont donnés au Tableau 2.

2.3.3. Examen segmentaire

Il s’agissait de déterminer l’étage le plus douloureux à la pression, indépendamment de la sensibilité des autres segments. Dans dix cas, l’ensemble du rachis cervical était sensible à la palpation (du côté droit ou gauche ou des deux côtés), ne permettant pas de déterminer un segment plus douloureux que les autres. Dans 22 cas, les étages cervicaux supérieurs étaient concernés (C1–3), dans 19 les étages moyens (C3–5) et dans huit, les étages inférieurs (C5–7). Le kappa moyen pour l’examen segmentaire du rachis cervical était 0,53 (intervalle de confiance : 0,31–0,73), soit une concordance acceptable. Les chiffres de reproductibilité établis par segments et côtés figurent au Tableau 3. Ils concernent les 49 patients dont la douleur provoquée prédominait à un étage et d’un côté.

2.3.4. Liens entre différents résultats de l’examen clinique

La concordance entre côté le plus douloureux à l’examen clinique et côté où la rotation était la plus limitée a été jugée mauvaise. En effet, plus d’une fois sur deux, la limitation était plus marquée dans la rotation vers le côté non douloureux.

Nous n’avons pas trouvé de concordance précise entre l’étage douloureux et la sensibilité musculaire. Ainsi, la sensibilité de l’insertion basse du muscle splénius du cou, lorsqu’elle était présente, était associée aussi bien à une atteinte cervicale haute (6 cas), moyenne (12 cas) que basse (7 cas). Pour le trapèze, les chiffres étaient de trois, cinq et deux cas respectivevment. En revanche, la sensibilité de l’insertion scalpulaire du muscle levator scapulae était plus souvent associée à une atteinte haute (14 cas) ou moyenne (5 cas) que basse (0 cas).

Enfin, il existe une relation statistiquement significative (coefficient r de Pearson : 0,35, p = 0,007) entre le score du questionnaire Indic et le nombre de sites douloureux, les patients ayant les scores les plus élevés au questionnaire étant ceux qui avaient le plus grand nombre de sites douloureux à la pression lors de l’examen palpatoire.

2.4. Discussion

Nous nous sommes inspirés des critères de qualité retenus dans la méta-analyse de Seffinger et al. [13] pour notre travail. La taille de notre échantillon se classe dans la moyenne des autres...
Tableau 2
Reproductibilité interobservateur de la sensibilité des muscles ou de leurs insertions.

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Prévalence* (%)</th>
<th>Concordance observée (%)</th>
<th>Concordance corrégée (kappa)</th>
<th>Intervalle de confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapèze gauche</td>
<td>23,7</td>
<td>79,7</td>
<td>0,44</td>
<td>0,17–0,71</td>
</tr>
<tr>
<td>Trapèze droit</td>
<td>42,4</td>
<td>78,0</td>
<td>0,52</td>
<td>0,31–0,74</td>
</tr>
<tr>
<td>Splenius gauche</td>
<td>39,0</td>
<td>69,5</td>
<td>0,39</td>
<td>0,17–0,62</td>
</tr>
<tr>
<td>Splenius droit</td>
<td>39,0</td>
<td>83,1</td>
<td>0,62</td>
<td>0,42–0,82</td>
</tr>
<tr>
<td>Levator scapulae gauche</td>
<td>40,7</td>
<td>74,6</td>
<td>0,46</td>
<td>0,23–0,69</td>
</tr>
<tr>
<td>Levator scapulae droit</td>
<td>35,6</td>
<td>69,5</td>
<td>0,36</td>
<td>0,12–0,60</td>
</tr>
<tr>
<td>Semispinalis partie supérieure gauche</td>
<td>20,3</td>
<td>81,4</td>
<td>0,37</td>
<td>0,07–0,66</td>
</tr>
<tr>
<td>Semispinalis partie supérieure droit</td>
<td>23,7</td>
<td>78,0</td>
<td>0,34</td>
<td>0,06–0,63</td>
</tr>
<tr>
<td>Semispinalis partie moyenne gauche</td>
<td>40,7</td>
<td>67,8</td>
<td>0,33</td>
<td>0,08–0,57</td>
</tr>
<tr>
<td>Semispinalis partie moyenne droite</td>
<td>42,4</td>
<td>74,6</td>
<td>0,48</td>
<td>0,25–0,70</td>
</tr>
<tr>
<td>Semispinalis partie inférieure gauche</td>
<td>25,4</td>
<td>79,7</td>
<td>0,46</td>
<td>0,21–0,72</td>
</tr>
<tr>
<td>Semispinalis partie inférieure droit</td>
<td>28,8</td>
<td>77,3</td>
<td>0,45</td>
<td>0,23–0,70</td>
</tr>
</tbody>
</table>

a Pour l’examinateur senior.

Tableau 3
Reproductibilité interobservateur de l’examen segmentaire chez les 49 patients n’ayant pas une sensibilité diffuse du rachis cervical.

<table>
<thead>
<tr>
<th>Niveaux</th>
<th>Prévalence* (%)</th>
<th>Concordance observée (%)</th>
<th>Concordance corrégée (kappa)</th>
<th>Intervalle de confiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-C2-C3 gauche</td>
<td>14,3</td>
<td>83,1</td>
<td>0,65</td>
<td>0,46–0,85</td>
</tr>
<tr>
<td>C1-C2-C3 droit</td>
<td>24,5</td>
<td>76,3</td>
<td>0,53</td>
<td>0,31–0,74</td>
</tr>
<tr>
<td>C3-C4-C5 gauche</td>
<td>18,4</td>
<td>83,1</td>
<td>0,66</td>
<td>0,47–0,85</td>
</tr>
<tr>
<td>C3-C4-C5 droit</td>
<td>20,5</td>
<td>62,7</td>
<td>0,32</td>
<td>0,13–0,50</td>
</tr>
<tr>
<td>C5-C6-C7 gauche</td>
<td>1,3</td>
<td>7,5</td>
<td>0,60</td>
<td>0,35–0,80</td>
</tr>
<tr>
<td>C5-C6-C7 droit</td>
<td>8,1</td>
<td>72,9</td>
<td>0,41</td>
<td>0,19–0,64</td>
</tr>
</tbody>
</table>

a Pour l’examinateur senior.

séries de la littérature et elle dépasse largement la taille de référence de 30 sujets. Trois biais potentiels peuvent être évoqués. Le premier est la sensibilisation des patients après le premier examen, avec un second passage possiblement plus dououreux et/ou des réponses faussées. En fait, les scores totaux de douleur au premier et au second examen sont comparables ($p = 0.8$). Il n’y a donc pas de modification liée à un double examen. Le deuxième biais est que l’un des examinateurs est un médecin en cours de formation en médecine manuelle. Son manque d’expérience pourrait fausser les résultats. Mais d’une part, nous avons travaillé sur une série pilote de 15 patients afin de corriger et d’harmoniser nos techniques d’examen et ce chiffre nous a semblé suffisant. D’autre part, son manque d’expérience le rend plus à même de retranscrire objectivement ce qu’il observe, sans tenter de minimiser ou de majorer ce qu’il trouve en fonction de ce qui aurait pu être attendu en théorie. Le troisième biais concerne la difficulté pour les patients à répondre par oui ou par non à la question « avez vous mal quand j’appuie ? » lorsque la douleur était peu intense. Cette difficulté est à même de faire baisser le coefficient kappa. Une solution pourrait être d’utiliser une EVA pour évaluer la douleur provoquée, mais Pool et al. ont montré que les patients n’étaient pas capables de quantifier de façon fiable la même douleur provoquée à deux examens séparés de 15 minutes [10].

Il existe dans la littérature quelques études explorant la reproductibilité interobservateur de l’examen du rachis et des tissus mous cervicaux. En ce qui concerne l’examen segmentaire, elles sont très peu nombreuses. Hubka et Phelan [6] ont examiné 30 patients âge par âge à la recherche d’une douleur provoquée, mais il s’agissait de patients avec des cervicalgies mécaniques strictement unilatérales et qui furent examinés seulement du côté spontanément douloureux, ce qui améliorait un peu la performance de l’examen. Le kappa était de 0,68 (bon, intervalle de confiance : 0,47–0,89), soit un peu meilleur que le notre (0,53, acceptable, intervalle de confiance : 0,31–0,73). Van Suijlekom et al. classèrent, comme nous, l’étage sensible en trois groupes (rachis cervical supérieur, moyen, inférieur). Le kappa allait de 0,2 à 0,6 (de passable à acceptable). Enfin, Cleland et al. ont suivi un protocole un peu différent, puisque la douleur segmentaire était cherchée non à la pression mais en testant la mobilité vertébra par vertébra [3]. Le kappa est inférieur à 0,27 (passable) sauf pour C6 et C7 (0,55 et 0,90 respectivement). Les travaux sur la reproductibilité de l’examen des muscles ou de leurs insertions sont à peine plus nombreux [7,1]. Trapèze et levator scapulae ont été examinés, mais pas le splenius ni le semispinalis sur toute sa hauteur. Nous donnons ces résultats au Tableau 4. On note que la reproductibilité va de passable à modérée. Nos résultats sont moins bons que ceux d’Andersen et Gaardboe, mais leur recrutement comportait une majorité de patients fibromyalgi ques. Il y a un peu plus d’études sur la reproductibilité de la mesure de la mobilité cervicale, mais elles ont été menées dans des conditions différentes de la notre : avec un goniomètre, ou en étudiant la mobilité active ou encore de façon segmentaire (étage par étage). Youdas et al. ont noté une mauvaise reproductibilité lorsque la mobilité était évaluée visuellement (en utilisant des coefficients de corrélation intraclasses) [16]. Au contraire, Hoppenbrouwers et al. [5] ont trouvé un kappa à
Tableau 4
Reproductibilité interobservateurs pour la sensibilité de certains muscles cervicaux dans les deux études disponibles.

<table>
<thead>
<tr>
<th>Membre</th>
<th>Levoska et al.</th>
<th>Andersen et Gaardboe</th>
<th>Notre étude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trappe gauche</td>
<td>0,15</td>
<td>0,78</td>
<td>0,44</td>
</tr>
<tr>
<td>Trappe droit</td>
<td>0,22</td>
<td>0,72</td>
<td>0,53</td>
</tr>
<tr>
<td>Semispinalis supérieur gauche</td>
<td>-</td>
<td>0,67</td>
<td>0,37</td>
</tr>
<tr>
<td>Semispinalis supérieur droit</td>
<td>-</td>
<td>0,71</td>
<td>0,34</td>
</tr>
<tr>
<td>Levator scapulae gauche</td>
<td>0,42</td>
<td>0,71</td>
<td>0,46</td>
</tr>
<tr>
<td>Levator scapulae droit</td>
<td>0,52</td>
<td>0,58</td>
<td>0,36</td>
</tr>
</tbody>
</table>

Valeur de kappa.

0,54 (acceptable), Fjellner et al. [4] des valeurs de kappa comprises entre 0,41 et 0,6 (acceptable) et Pool et al. des valeurs allant de 0,05 à 0,61 (de mauvais à bon) [10]. Notre méthode de calcul (valeur de p) ne permet pas une comparaison facile avec ces travaux, mais pour déterminer le côté où la rotation était la plus limitée, nous obtenons un kappa à 0,57, ce qui est acceptable. Là aussi, nous avons noté la difficulté d’accorder les deux examinateurs quand la différence de rotation d’un côté à l’autre était de moins de 10°. En ce qui concerne la douleur en flexion-extension, on note les chiffres de 0,53 et 0,67 [14] et 0,55 et 0,23 [3] à comparer avec nos chiffres de 0,71 et 0,76 respectivement (bonne concordance).

La reproductibilité de l’examen clinique cervical tel que nous le pratiquons est globalement acceptable (quand kappa dépasse 0,4). Cela nous encourage à continuer à l’utiliser en routine et à l’enseigner. Seule la mesure de la mobilité rotatoire et la recherche d’une douleur en flexion ou extension montrent une reproductibilité forte. Cela indique que de futures études de validation de cet examen clinique devraient avant tout s’intéresser à ces derniers paramètres. En effet, comme le rappelle Bogduk et McGuirk, aucune des manœuvres que nous avons évaluées n’a été validée. On ignore ce que signifie une anomalie de mobilité ou une sensibilité de muscles [2]. On ignore également si la positivité de l’examen segmentaire correspond à un élément vertébral (articulation zygapophysaire, disque, périoste) ou aux muscles qui le recouvrent.

Deux autres conclusions intéressantes peuvent aussi être notées. La présence d’une sensibilité anormale d’un muscle ne revoyait pas à un étage cervical précis pour le trapèze ou le splénomuscu- lus du cou. En revanche, une sensibilité du muscle levator scapulae était associée à une souffrance du rachis cervical moyen ou supérieur, mais pas inférieur. La seconde est la présence d’un parallélisme entre le nombre de sites douloureux à la palpation et le score au questionnaire Indic. Plus il y avait de points sensibles, plus la gène fonctionnelle était forte. Deux études avaient déjà noté que la présence d’une douleur provoquée par la palpation des articulations zygapophysaires cervicales permettait de différencier assez bien les sujets cervicalgiques des sujets sains, les deux groupes étant constitués en fonction des résultats de questionnaires fonctionnels [11,12]. Nos résultats vont nettement dans ce sens, en apportant un élément nouveau et important, à savoir que l’examen clinique permet à lui seul de juger de l’importance de la gène fonctionnelle.

2.5. Conclusion

L’examen cervical tel que nous le pratiquons démontre une reproductibilité interobservateur acceptable, ce qui ne préjuge pas de sa validité. La présence d’une douleur à l’insertion du muscle levator scapulae est associée à une souffrance cervicale moyenne ou haute. Le nombre de points douloureux est le reflet de la gène fonctionnelle ressentie par le patient.

Références