Effects of a primary rehabilitation programme on arterial vascular adaptations in an individual with paraplegia

Effet d’un programme de réhabilitation par l’exercice sur la rigidité artérielle d’un sujet blessé médullaire

N. Tordi a,*, L. Mourot a, A. Chapuis b, B. Parratte a,c, J. Regnard a,d

a EA 3920, IFR133, université de Franche-Comté, Besançon, France
b Centre de réadaptation fonctionnelle « Bretegnier », 70400 Héricourt, France
c Médecine physique, CHU, Besançon, France
d Explorations fonctionnelles et physiologie, CHU, Besançon, France

Received 28 October 2008; accepted 13 November 2008

Abstract

Objective. – Evaluation of the effects of 6 weeks of wheelchair endurance training on arterial stiffness in an individual with paraplegia.

Methods. – A 22-year-old male patient with complete (ASIA A) paraplegia (T11) was tested before and after training (30 minutes three times per week). Physical performance and cardiopulmonary response were evaluated during a maximal progressive test. Heart rate (HR), blood pressure, stroke volume and arterial carotid–wrist and carotid–ankle pulse wave velocity (PWV) were measured at rest.

Results. – Maximal responses registered (maximal tolerated power, \(\dot{V}_O_2\) peak) during the exercise test were increased after training. At rest, HR as PWV decreased, whereas cardiac output and blood pressure remained constant.

Conclusion. – Continuous exposure of the subject to a repeated high intensity exercise bout for 6 weeks elevated fitness level. Such a regular practice might also constitute a major way to trigger vascular remodelling beyond to the trained body part.

Keywords: Pulse wave velocity; Arterial stiffness; Paraplegia; Exercise training

Mots clés: Rigidité artérielle ; Vitesse de l’onde de pouls ; Paraplégie ; Entraînement

* Corresponding author. EA 3920, Explorations fonctionnelles respiratoires, 2, place Saint-Jacques, 25030 Besançon cedex, France.
E-mail address: nicolas.tordi@univ-fcomte.fr (N. Tordi).

© 2009 Elsevier Masson SAS. All rights reserved.
1. English version

1.1. Introduction

In individuals with spinal cord injury (SCI), the areas of the body below the level of the lesion are paralysed and therefore extremely inactive, independent of fitness level. As a result, remarkable muscle atrophy can be observed below the level of the lesion. Furthermore, the inactivity and atrophy of the paralyzed muscles lead to a decreased demand for oxygen and, consequently, a decrease in the delivery of oxygen by the circulatory system.

This is observed through vascular adaptations in the legs of individuals with SCI[11,14,13]. Detrimental vascular adaptations are related to flow reduction, decreased diameter, decreased arterial compliance of the femoral artery and endothelial dysfunction[15,23]. Previous research has shown a 40% decrease in diameter and 70% reduction in blood flow through the common femoral artery[29] between trained able bodied subjects and subjects with long-term SCI. It has been demonstrated that the majority of vascular adaptations to inactivity and paralysis is completed within 6 weeks[5]. These peripheral circulatory and skeletal muscle adaptations may contribute to an increased risk of cardiovascular disease in SCI patients.

Regular physical activity may decrease vascular resistance[6] by increasing the number of arterioles and capillaries and the diameter of the conduit arteries. Evidences concerning the vascular bed in the legs of subjects with a complete SCI suggest that endothelial adaptations to exercise training may occur below the level of the lesion. Daily electrically induced training of the legs in subjects with SCI normalized the vascular properties of the femoral arteries[4]. On the other hand, Kingwell et al. demonstrated that 4 weeks of leg training increased the forearm basal production of nitric oxide in the able-bodied subjects. These results suggest that the impact of training on the vascular bed may also involve non-exercised limbs.

In a previous study[34], we evaluated the effects of an intensive wheelchair exercise training program on able-bodied subjects. The cardiorespiratory response and performance observed during exercise, performed either with arms or legs, were improved after training. According to the known central and peripheral adaptations to arm training[22,32], it could be suggested that training provides an important transfer effect in both pairs of limbs.

The systemic adaptations observed in previous studies lead us to raise questions about the effects of an intensive training program performed with the arms, on the vasculature of the paralyzed leg in subjects with SCI.

Based on these previous findings, we applied the same intensive wheelchair training program[34] to a subject with SCI in order to look at the effects on fitness level and arterial stiffness in both trained and untrained limbs.

1.2. Materials and methods

A spinal cord injured male participated in this study (age 22 years, height 175 cm, body mass 65 kg, lesion level T11, ASIA A, time since injury 5 months). His cardiovascular characteristics at rest, physical performance and cardiorespiratory responses recorded during a maximal progressive test were evaluated before and after 6 weeks of interval training.

1.2.1. Evaluation procedure

The subject was tested after a 24-hour abstinence from strenuous exercise, alcohol and caffeinated foods and beverages.

After 30 minutes of rest in the supine position, heart rate (HR) and stroke volume (SV) were measured continuously during 10 minutes, while pulse wave velocity (PWV) and blood pressures (BP) were measured every two minutes. Then, the subject performed a maximal incremental exercise test on a specific wheelchair ergometer.

The progressive wheelchair test started with a resting period of six minutes on the wheelchair ergometer in order to stabilise the different cardiorespiratory variables. This was followed by a two minutes warm up, which was performed at a residual friction power of 15 watts. The load was then stepwisely increased by five watts every two minutes until the subject was no longer able to maintain the required speed. The highest load that could be maintained with a constant speed for one minute was taken as Maximal Tolerated Power (MTP, watts). \(V_{O_2} \) peak was determined as the highest \(V_{O_2} \) recorded in a 30 seconds average.

Training period: the training procedure has been previously described in 2001[34]. Briefly, subjects performed 30 minutes of wheelchair ergometry three times per week, for 6 weeks. Sessions consisted of repeated alternating exercise bouts of moderate (four minutes at 50% MTP) and heavy intensity (one minute at 80% MTP). Intensities of both moderate and heavy bouts were selected from the maximal progressive test. The intensity of each training period was adjusted throughout the training program to reach almost 80% of maximal HR by the end of the sixth high intensity interval. When the HR target is not obtained at the end of the session, the training load of the next session is increased by 10 watts.

All training and testing sessions were performed at a cadence freely chosen by the percipient, generally in the range of 1.39 to 1.67 m/s of linear displacement and were performed under medical supervision, with BP control before and after every exercise.

1.2.2. Materials

During the resting period, HR was measured via a wireless Polar-monitoring system (Polar Electro Oy, Kempele, Finland), systolic pressure (SP) and diastolic pressure (DP) were measured using an automatic device (DynamapGE Medical Systems, Buc, France) and SV was measured using an impedance device (Physioflow PF-05, Manatec Biomedical, Paris). The aortic PWV was determined from the foot-to-foot flow wave velocity simultaneously recorded at the right common carotid artery, right brachial artery and dorsalis pedis/tibialis posterior artery using an automatic validated device (Compilior SPE, Artech Medical, Pantin, France). The distance between the site of measurement was estimated.
1.3. Results

The training program was completed by the subject without excessive fatigue or shoulder pain. The HR monitoring for each training session and the load adjustment on the ergometer enabled the subject to adhere to the intensity recommendations throughout the entire training period. The accuracy of the ergometer in controlling the intensity and duration of exercise may explain the efficiency of our training program. Fig. 1 shows the HR registered during one training session. The HR fluctuations can be observed throughout the exercise and the peak HR obtained at the end of the session (180 bpm).

1.3.1. Effects of training on peak responses during exercise

At the end of each testing session, the subject was exhausted. Peak averages of 30 seconds obtained during maximal incremental tests before and after training are presented in Table 1.

1.3.2. Effects of training on resting values

HR decreased after training: 77.3 ± 1.3 to 69.5 ± 2.8 b/min (−10.1%) whereas SV increased: 74.6 ± 5.3 to 81.8 ± 5.8 ml (+9.6%) and cardiac output remained constant: 5.6 ± 0.7 to 5.5 ± 0.8 ml (−1.9%).

Table 1

<table>
<thead>
<tr>
<th>MTP (watts)</th>
<th>(V_O_2) (ml/min/kg)</th>
<th>(V_CO_2) (ml/min)</th>
<th>RER</th>
<th>(V_E) (l/min)</th>
<th>HR (b/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>40</td>
<td>22.7</td>
<td>1863.9</td>
<td>1.2</td>
<td>73.3</td>
</tr>
<tr>
<td>After</td>
<td>50</td>
<td>26.36</td>
<td>1809.2</td>
<td>1.1</td>
<td>77.5</td>
</tr>
<tr>
<td>%</td>
<td>+25</td>
<td>+16.1</td>
<td>−2.9</td>
<td>−11.65</td>
<td>+5.8</td>
</tr>
</tbody>
</table>

The light effect of training on the BP did not reach the significant level, SP changed from 127.4 ± 3.2 mmHg to 122 ± 5 mmHg (−4.2%) whereas DP remained stable 63.3 ± 2.9 mmHg and 63 ± 1.2 mmHg (−0.3%) respectively pre- and post-training.

The PWV decreased from 6.9 ± 0.2 cm/s to 5.4 ± 0.3 cm/s (−21.8%, \(p = 0.001\)) in the upper limb and from 8.8 ± 0.4 cm/s to 8.3 ± 0.2 cm/s (−5.7%, \(p = 0.04\)) in the lower limb.

1.4. Discussion

As expected, the results of the present study indicate that a subject with a SCI can improve his physical work capacity through a rehabilitation program. The results observed in the trained limbs are in accordance with a previous study [2,33] and evidence that a tailored specific training program may impact the whole body vascular properties.

Exercise training can induce structural and functional changes within the cardiovascular system [9,19]. Although the mechanisms responsible for exercise-induced vascular adaptations seem to differ between vascular beds, it is understood that the increased blood flow and high shear stress forces created during repeated exercise bouts induce the structural enlargement of conduit vessels (arteriogenesis) [12]. Arterial PWV evaluates the transit time of a pressure wave between two remote parts of the arterial tree. A decreased PWV can be related to a decrease in vessel stiffness [10,9].

In our study, the decrease of PWV observed in the upper limb following exercise training could be understood as a decreased arterial stiffness in the trained body area, according to the findings of previous studies [18,8,3].
The direct impact of exercise training on the mechanical properties of the vessels in non exercising limbs is more controversial.

Both Kingwell et al. and Katayama et al. [17,20] have reported that leg training can modify the vasculature properties in the non trained upper limbs. In SCI population, adaptations in the lower limb under the lesion are altered by the characteristics of the injury (level of the lesion, time since injury). In fact, after less than one minute of light arm exercising in paraplegic subjects (mean HR 120 bpm), Hopman et al. [15] observed calf volume decreases which were highly correlated with the level of the lesion. As regulation of vascular tone is not only induced by a central command, but also by spinal and local reflex mechanisms [27]. This response is probably based on local reactions by humoral agents, blood composition, muscle metaboreflexes and spinal reflexes induced by changes in plasma catecholamine levels and blood lactate [28]. As the efficiency of humoral agents and muscle metaboreflexes depends on the amount of active muscle mass. This could explain the relationship between the level of the spinal cord lesion and the vessel reactivity in the lower limb during arm exercise.

However, Thijssen et al. [31] have concluded that hybrid training (cycling with functional electrical stimulation and arm cranking) in SCI individuals does not result in vascular adaptations in areas not directly involved in the exercise (calf).

Consequently, it seems that the effect of the upper limbs training on the vasculature of the lower limbs requires several conditions.

In our study what are the parameters that can justify our results?

First of all, our volunteer presents a low level of lesion, consequently, the body mass available for exercise is large. Consequently, the amount of muscle mass recruited during the exercise may have been important [25]. The mechanisms previously described may have played, if the stimulation was great enough, an important part in the subject’s response.

Second, during our interval exercise (Fig. 1), HR increased regularly with exercise duration and increased somewhat during the peaks and tended to return to the base level of exercise at the third or fourth minute between peaks. HR and blood flow are closely correlated with the intensity of exercise, implying that the two principal forces acting on a blood vessel (pulsatile stress and shear stress) were constantly being adjusted during the interval exercise training used in this study. The modulation of HR, CO and specifically shear stress throughout each 30 minutes exercise session leads us to believe that vasoactive substances (ie NO [16], ANP [30] and histamine [26]) were chronically released during our interval training program. Those substances are well-known to interfere with the mechanical properties of the vasculature.

Third, the cardiovascualar adaptations following the interval exercise training program observed in this study clearly oppose the lack of adaptations observed by Thijssen et al. [31]. Although some of the changes may be attributed to the characteristics of our subject (highly motivated, young healthy, low level of injury), the difference between the two training protocols (design and intensity) and their respective effect should also be considered.

Thijssen et al. [31] failed to note any vascular adaptations (resting blood flow, vascular resistance, vascular conductance, arterial diameter) in the forearm after 4 weeks of arm training. In addition, the reported VO₂peak increase (+6% approximately) is smaller than the increase observed in our study (+16%). In these conditions, the lack of training extension effects to the calf is not surprising. This may indicate that the training intensity was not high enough to observe a change in subjects where vessels in the paralysed non exercising limbs are altered as in subjects with a SCI. In fact, in patients with chronic heart failure but without spinal section, Linke et al. or Maiorana et al. [21,24], using similar training intensity as in Thijssen’s study, have demonstrated endothelial adaptations in the non exercised limbs. Consequently, the design of the upper limb training program with spinal cord injured patient may be a key parameter to induce vascular adaptations in non exercised limbs.

1.5. Limitations

The training effect observed through PWV measured between the common carotid artery and the dorsalis pedis/ tibialis posterior artery, is smaller in the non-exercised limb when compared with the trained limb. This measurement includes both central and peripheral parts of the vasculature. The present study does not allow distinguishing which part of the arterial tree is mainly impacted by the training. However, it clearly shows that endurance training performed by one subject with SCI impacts larger areas than those directly involved in the exercise.

1.6. Conclusion

In the present study, a spinal cord injured subject performed an intense interval exercise-training program during 6 weeks. Arterial stiffness of both trained and untrained limbs were increased at the end of the training. The intense periods in each session require specific haemodynamic and metabolic responses that should be considered during the all-training duration. The chronic exposure to repeated high intensity exercise bouts induces chronic enhancement of the cardiac output and probably of BP and can be considered as a major contributor to the remodelling process of vasculature characteristics observed with this patient. On condition that our results are confirmed with a larger population, they clearly show to the therapist that the effects of this type of training can be extended to the body areas that are not directly implied in the wheelchair locomotion.

Acknowledgements

The authors thank the staff and patients of the centre de réadaptation fonctionnelle « Bretegnier » for their participation and assistance in the project. The authors especially express their gratitude to E. Colin and J. Ruiz for being so helpful during the exercise tests.
2. Version française

2.1. Introduction

Chez le blessé médullaire, les territoires sous-lésionnels sont inactifs quel que soit le niveau d’activité physique du sujet. Cela se traduit par une atrophie musculaire des territoires sous-lésionnels. Cette atrophie et l’inactivité conduisent à une baisse du besoin en oxygène et par voie de conséquence de l’apport en oxygène par le système vasculaire.

Ce phénomène est caractéristique de l’adaptation vasculaire observable au niveau des membres inférieurs chez le blessé médullaire [11,14,13]. À moyen terme, on observe une réduction du flux sanguin, une diminution du diamètre des vaisseaux, de la compliance de l’artère fémorale et une dysfonction endothéliale [15,23]. Il a déjà été observé chez des sujets anciennement traumatisés une réduction de 70 % du flux sanguin et de 40 % du diamètre au niveau de l’artère fémorale, par rapport à des sujets valides entraînés [29]. Il a aussi été démontré que la majorité des adaptations dues à l’inactivité et la paralysie étaient complètes en six semaines [5]. Ces adaptations vasculaires périphériques et musculaires contribuent à augmenter les risques d’accidents cardiovasculaires chez les sujets blessés médullaires.

Cependant, l’exercice physique régulier peut diminuer les résistances vasculaires périphériques en augmentant le nombre d’artérioles et de capillaires et le diamètre des artères de conduction [6].

Lors d’une étude précédente [34], nous avons évalué les effets d’un programme intensif d’entraînement en fauteuil roulant chez des sujets valides. Les réponses cardiorespiratoires et les performances observées lors d’exercice réalisé avec les membres supérieurs ou inférieurs étaient augmentées après l’entraînement. Connaissant à la fois les effets centraux et périphériques [22,32] d’un entraînement réalisé avec les membres supérieurs, nous avons suggéré un transfert des effets de l’entraînement des membres entraînés vers les membres non entraînés pour expliquer ces résultats.

L’effet systémique de l’exercice physique soulève la question des effets possibles d’un entraînement réalisé avec les membres supérieurs sur les territoires paralysés d’un sujet blessé médullaire.

Sur cette base, nous avons proposé à un sujet blessé médullaire de suivre ce programme d’entraînement en fauteuil [34] afin d’en évaluer les effets, d’une part, sur son niveau d’aptitude physique et, d’autre part, sur la rigidité artérielle des membres supérieurs entraînés et inférieurs non entraînés.

2.2. Matériels et méthodes

2.2.1. Procédure d’évaluation

Les tests ont été réalisés après 24 heures passées sans exercice physique intense, consommation de tabac, d’alcool ou de caféine.

Après 30 minutes de repos allongé, la fréquence cardiaque (FC) et le volume d’éjection systolique (VES) ont été mesurés en continu pendant dix minutes. Pendant cette période, la pression artérielle systolique (PAS) et diastolique (PAD) ainsi que la vitesse de propagation de l’onde de pouls (VOP) ont été mesurées toutes les deux minutes.

Le sujet était ensuite installé dans son fauteuil pour réaliser un test maximal progressif sur un ergomètre spécifique pour fauteuil roulant. Le test débute par une période de six minutes de repos qui permet d’estimer les réponses cardiorespiratoires basales du sujet. L’exercice débute ensuite par deux minutes d’échauffement réalisées à une puissance de 15 Watts. La puissance est ensuite augmentée toutes les deux minutes par paliers de cinq watts jusqu’à ce que le sujet ne soit plus capable de maintenir la vitesse imposée. La puissance la plus élevée maintenue au moins une minute avec une vitesse stable a été considérée comme la puissance maximale tolérée (PMT) par le sujet. Le pic de consommation d’oxygène (V_{O2}) correspond à la plus haute valeur de V_{O2} moyennée sur 30 secondes.

Entraînement : le protocole d’entraînement est similaire à celui décrit en 2001 [34].

En résumé, le sujet réalise 30 minutes d’exercice en fauteuil roulant, trois fois par semaine, pendant six semaines. Chaque séance correspond à un exercice en intervalle constitué de six blocs où alternent dans l’ordre une période longue (quatre minutes) d’intensité faible (50 % PMT) et une période plus courte (une minute) d’intensité élevée (80 % PMT). Les intensités de travail ont été déterminées à partir du test maximal progressif initial pour amener à la fin du sixième bloc la FC du sujet à au moins 80 % de la fréquence maximale mesurée lors du test progressif. Lorsque cette FC cible n’est plus atteinte, les charges de travail sont augmentées de dix watts à la séance suivante.

Pour toutes les situations d’exercice en fauteuil, la fréquence d’action manuelle est librement choisie par le sujet, la vitesse imposée correspond à un déplacement linéaire de 1,38 m/s, le sujet est placé sous une surveillance médicale avec contrôle de la pression artérielle avant et après l’exercice.

2.2.2. Matériels

Pendant la période de repos qui précède l’exercice, la FC a été enregistrée à l’aide d’un cardiofréquencemètre (Polar Electro Oy, Kempele, Finland), les pressions artérielles par un système automatique (Dynamap® GE Medical Systems, Buc,
France) et le VES par impédancémétrie thoracique (Physioflow PF-05, Manatec Biomedical, Paris). La VOP a été déterminée par un système automatique entre l’artère carotide et l’artère radiale (au niveau du poignet) et l’artère tibiale postérieure droite (Compilior SP^®®, Artech Medical, Pantin, France). Un minimum de dix ondes de pouls a été utilisé pour la mesure [1].

Pendant le test maximal progressif, la V_O_2 et la ventilation minute (V_E) ont été continuément mesurées par un système portable d’analyse des gaz (Cosmed K4b², Rome, Italie).

L’analyseur a été calibré avant et après chaque utilisation selon les recommandations du constructeur. La FC a été mesurée en continu (Polar Electro Oy, Kempele, Finland). Tous les exercices ont été réalisés sur le même ergomètre (VP100HEF tecmachine, Andrezieux Boutheon, France [7]), avec le fauteuil personnel du sujet.

2.2.3. Analyse statistique

Les valeurs présentées correspondent aux moyennes obtenues en fonction du temps ($±$ SD). Les effets de l’exercice sur les réponses maximales collectées pendant l’exercice ont été considérés en fonction de la variation moyenne en pourcentage ($\Delta% = [\text{moyenne avant l’entraînement} – \text{moyenne avant l’entraînement}] \times 100$). Les effets de l’entraînement sur la V_O_2 et les pressions artérielles ont été analysés en utilisant un test t de Student pour séries appariées, pour comparer les séries de mesure réalisées pendant la période de repos. Le seuil de significativité a été établi à 5%.

2.3. Résultats

Le programme d’entraînement a été bien toléré par le sujet, sans fatigue excessive ni douleur. Le relevé de FC, l’ajustement des charges au cours des séances et la précision de l’ergomètre ont permis au sujet de parfaitement suivre la prescription. La Fig. 1 montre un relevé de FC enregistré lors d’une séance d’entraînement. L’alternance des intensités de travail peut être observée tout au long de cette séance ainsi que la FC cible obtenue en fin de séance (180 bpm).

2.3.1. Effets de l’entraînement sur les réponses pics observées lors de l’exercice progressif

Les valeurs pics moyennées sur 30 secondes obtenues avant et après l’entraînement sont présentées dans le Tableau 1.

2.3.2. Effets de l’entraînement sur les variables mesurées au repos

Au repos après entraînement, la FC est diminuée (de 77,3 ± 1,3 à 69,5 ± 2,8 b/m ; −10,1 %) alors que le VES est augmenté (de 74,6 ± 5,3 à 81,8 ± 5,8 ml ; + 9,6 %) et que le débit cardiaque (VES × FC) reste constant (de 5,6 ± 0,7 à 5,5 ± 0,8 l/m ; −1,9 %).

Les modifications observées au niveau despressions artérielles n’atteignent pas le seuil de significativité : la PAS baisse de 127,4 ± 3,2 mmHg à 122 ± 5 mmHg (−4,2 %) et la PAD baisse de 63,3 ± 2,9 mmHg à 63 ± 1,2 mmHg (−0,3 %). La VOP mesurée entre l’aorte et l’artère radiale diminue de 6,9 ± 0,2 cm/s à 5,4 ± 0,3 cm/s (−21,8 %, $p = 0,001$) et celle mesurée entre l’aorte et l’artère tibiale postérieure diminue de 8,8 ± 0,4 cm/s à 8,3 ± 0,2 cm/s (−5,7 %, $p = 0,04$).

2.4. Discussion

Comme supposé, les résultats de cette étude montrent que ce programme d’exercice en créneau permet d’améliorer le niveau d’aptitude physique d’un sujet blessé médullaire. Les résultats observés sont en accord avec ceux précédemment rapportés [2,33] et montrent par ailleurs qu’un programme d’exercice personnalisé peut avoir un impact positif sur les propriétés vasculaires systémiques.

L’entraînement physique peut induire des modifications structurelles et fonctionnelles du système vasculaire [9,19]. Les mécanismes qui sous-tendent ces adaptations vasculaires semblent différents en fonction des territoires concernés. Il est cependant admis que l’augmentation du débit sanguin et des contraintes mécaniques au niveau vasculaires, provoquée par la répétition des exercices, conduit à des modifications structurales des vaisseaux [12]. Celles-ci peuvent être évaluées par la VOP entre deux sites de l’arbre artériel, qui révèle le niveau

![Fig. 1. Fréquence cardiaque enregistrée pendant une séance d’entraînement.](image)
de rigidité de la paroi des vaisseaux. Plus cette vitesse est élevée plus la paroi est rigide [9,10].

Dans notre étude, la diminution de la VOP observée au niveau des membres supérieurs après l’entraînement peut être interprétée comme reflétant une diminution de la rigidité artérielle dans les territoires entraînés, conformément à ce qui a déjà été décrit dans la littérature [18,8,3].

Cependant, l’impact de l’entraînement physique sur les propriétés mécaniques des territoires non entraînés est plus controversé.

Kingwell et al. et Katayama et al. [17,20] ont rapporté précédemment que l’entraînement des membres inférieurs pouvait modifier les propriétés vasculaires des membres supérieurs chez des sujets valides.

Chez le blessé médullaire, les adaptations possibles des territoires sous-lésionnels sont conditionnées par les caractéristiques de la lésion (niveau et acienneté de la lésion). En effet, après une minute d’exercice léger (120 bpm) avec les membres supérieurs, Hopman et al. [15] ont observé chez le blessé médullaire une diminution du volume du mollet fortement corrélée au niveau de la lésion. Puisque le tonus vasculaire n’est pas uniquement sous contrôle central mais dépendant aussi de commandes spinales, de la composition du sang et de mécanismes réflexes [27]. Cette réponse est probablement basée sur des réactions locales via des agents humoraux, le métaboréflexe ou des réflexes spinaux avec changement du taux de catécholamine plasmatique et de lactate sanguin [28]. Comme l’efficacité des agents humoraux et du métaboréflexe dépend du volume musculaire actif, cela pourrait expliquer la relation entre le niveau de la lésion médullaire et la réaction vasculaire au niveau des membres inférieurs lors de l’exercice des membres supérieurs.

Cependant, Thijssen et al. [31] après un entraînement hybride (pédalage avec stimulation électrique des membres supérieurs et exercice de manivellage des membres supérieurs) ont conclut que chez des sujets blessés médullaires, l’entraînement n’avait aucun effet sur les territoires non directement impliqués dans l’exercice (mollet).

La possibilité d’un effet de l’entraînement des membres supérieurs sur les vaisseaux des territoires sous-lésionnels semble donc être conditionnelle.

Quels sont dans notre étude les éléments qui justifieraient alors les résultats observés ?

Premièrement, notre sujet volontaire présente un niveau de lésion relativement bas, la masse musculaire préservée et disponible pour l’exercice est donc importante. Il est alors logique de penser que le volume musculaire actif lors de l’entraînement aie été conséquent [25]. Dans ces conditions, les mécanismes précédemment évoqués peuvent, à condition d’avoir été suffisamment sollicités, avoir joué un rôle déterminant dans les adaptations observées chez notre sujet.

Deuxièmement, pendant les séances d’intervalles proposées (Fig. 1), la FC augmente régulièrement au long de la séance et plus encore pendant les périodes d’exercice intense. Entre deux périodes intenses, la FC diminue pour se stabiliser entre la troisième et la quatrième minute, c’est-à-dire juste avant une nouvelle période intense. La FC et le débit cardiaque sont fortement liés à l’intensité de l’exercice. Cela implique dans le cas des séances proposées que les contraintes mécaniques imposées au système vasculaire suivent les mêmes fluctuations. Les variations de FC et débit cardiaque et donc les contraintes mécaniques subies par les vaisseaux sanguins tout au long des 30 minutes d’exercice nous amènent à penser que des substances vasoactives (NO [16], ANP [30] et histamine [26]) sont régulièrement produites lors des séances d’entraînement de notre programme. Or, ces substances sont connues pour leurs effets sur les propriétés mécaniques des vaisseaux sanguins.

Enfin, les adaptations vasculaires observées au niveau des membres non entraînés dans notre étude s’opposent aux observations faites par Thijssen et al. [31]. Bien que certaines différences puissent être attribuées aux caractéristiques des populations étudiées (motivation, âge, niveaux de lésion différents), les différences entre les protocoles d’entraînement (type et intensité) et leurs effets doivent également être considérées.

On pourra noter d’une part dans l’étude de Thijssen et al. [31] qu’aucune adaptation vasculaire (débit sanguin de repos, résistance vasculaire ou diamètre artériel) n’est rapportée pour les territoires entraînés (l’avant-bras) et, d’autre part, que l’augmentation du pic de VO2 (+ 6 % approximativement) est plus faible que les 16 % d’augmentation que nous avons pu observer. Dans ces conditions, il est peu surprenant qu’aucun effet de l’entraînement des membres supérieurs n’ait pu être visible au niveau du mollet. Il semble qu’une intensité d’entraînement supérieure avec des effets systémiques importants soient nécessaires pour observer de telles adaptations avec des sujets blessés médullaires. En effet, en utilisant avec des sujets insuffisants cardiaques dont l’intégrité médullaire est préservée des intensités d’entraînement comparables à celles proposées par Thijssen et al., Linke et al. ou Maiorana et al. [21,24] ont observé des adaptations vasculaires dans les territoires non entraînés. En conséquence, les caractéristiques du programme d’entraînement réalisé avec les membres supérieurs chez le blessé médullaire semblent être un déterminant majeur de l’adaptation vasculaire des territoires non entraînés.

2.5. Limites de l’étude

L’effet de l’entraînement sur les modifications de la VOP sont plus faibles sur les membres non entraînés que sur les membres entraînés. Cependant, la mesure de la VOP entre la carotide et l’artère tibiale postérieure inclut à la fois des territoires centraux et périphériques. Dans ces conditions, il est impossible de déterminer quelle partie de l’arbre artériel a été la plus sensible aux effets de l’entraînement. Cependant, ces résultats montrent que l’effet de l’entraînement peut s’étendre à des territoires qui n’ont pas été directement sollicités lors des exercices.

2.6. Conclusion

Au cours de cette étude, un sujet blessé médullaire a suivi pendant six semaines un entraînement intense d’exercice en
intervalle réalisé en fauteuil roulant. La rigidité artérielle mesurée avant et après la période d’entraînement diminue dans les territoires directement impliqués par l’exercice mais aussi dans ceux qui n’ont pas été directement entraînés. La spécificité des exercices proposés impose des adaptations hémodynamiques et métaboliques constantes tout au long des 30 minutes d’exercice. L’exposition chronique (trois fois par semaine) à ces situations durant les six semaines du programme peut être considérée comme une des principales causes pouvant justifier les adaptations vasculaires observées chez ce patient. Sous réserve d’être confirmés avec une plus large population, les résultats de ce travail soulignent pour le praticien l’intérêt de ce type de programme dont les effets s’entendent au-delà des territoires directement sollicités par la locomotion en fauteuil.

Remerciements

Les auteurs souhaitent remercier toute l’équipe d’encadrement du centre de réadaptation fonctionnelle « Bretegnier » sans qui ce travail n’aurait pu être réalisé ainsi que E. Colin et J. Ruiz pour leur participation lors des évaluations.

References

