Assessment of left ventricular twist mechanics in tako-tsubo syndrome by two-dimensional speckle tracking echocardiography

Centre hospitalier de Compiègne, Compiègne, France

Purpose. – To assess left ventricular (LV) twist mechanics in patients (pts) with tako-tsubo syndrome (TTS).

Methods. – Two-dimensional strain and LV twist by speckle tracking echocardiography (echoPACK 7 version 108) was performed in 10 consecutive pts with typical TTS according to the Mayo clinic criteria (77 ± 10 years, 100% women, and mean LVEF 44 ± 10%), at the acute phase (within 24 h after symptom onset) and after recovery (one month later). Ten healthy control (C) pts matched for age and sex (mean LVEF 72 ± 7%), and 10 pts with acute anterior myocardial infarction (MI) treated by successful primary angioplasty 24 h before, matched for LVEF, were compared to TTS pts. LV twist was assessed using the parasternal basal and apical short-axis planes, and defined as the net difference in degrees of apical (Ar) and basal rotation (Br). LV torsion was defined as LV twist normalized for dias-

Results. – At the acute phase, Br, Bs, Bd were not significantly different between groups (all, P > NS). LV twist and torsion (1.2 ± 1.1°/cm vs. 2.8 ± 1.1°/cm) were significantly reduced in pts with TTS as a result of severely impaired Ar (4 ± 5° vs. 13 ± 5°) when compared to C pts (all, P < 0.01). Pts with MI displayed intermediate values (P = NS vs. TTS, and P > 0.05 vs. C). Abnormal reversed apical rotation (clockwise when seen from the apex) was seen in 3 pts (30%) with TTS vs. none in the other groups. In pts with TTS, As, Ad, TR and UR were significantly reduced when compared to C (P < 0.05 vs. C, and P = NS vs. MI). Furthermore, in pts with TTS, there was a significant correlation between plasma NT-proBNP and Ar (r = −0.6), LV twist, LV torsion (r = −0.8), and time to Ar (r = 0.8) (all, P < 0.05) but not with Br (P > NS). At follow-up, LV twist, torsion, and Ar improved significantly in TTS and MI pts (all, P < 0.05 vs. acute phase), whereas the magnitude of improvement was higher in TTS pts (all changes, P < 0.05 vs. MI) who had final values similar to C (all, P > NS). In pts with TTS, As, Ad, TR, and UR also improved significantly at follow-up (all, P < 0.05).

Conclusion. – LV twist mechanics is significantly impaired in pts with TTS due to a severe reduction of apical function. This impairment is correlated to the increased LV wall stress and is entirely reversible.

doi:10.1016/j.acvd.2011.03.011

Left ejection fraction evaluation by speckle tracking

Hôpital militaire de Tunis, Tunis, Tunisia

Introduction. – The biplane Simpson remains the gold standard for LV function evaluation, but also global function assessment using echocardiography because of diverse pathologies (coronary disease, dilated cardiomyopathy, valvular disease...), for preoperative non cardiac surgery, or for systematic exams. First, LVEF Simpson was calculated. Then, global longitudinal strain was obtained from the apical 2, 3 and 4 chamber views. Subsequently, LVEF GLS was calculated with Lim formula.

Results. – LVEF Simpson = 61 ± 14% (min = 20%, max = 80%). GLS = 17.5 ± 5.2% (min = 1.4%, max = 25.4%). LVEF GLS = 62 ± 15% (min = 14%, max = 86%) with good correlation between the two methods (r = 0.87, P < 0.001). This correlation is verified in LVEF > 50% as well as in LVEF < 50%.

Conclusion. – The recommended echocardiographic method for LVEF assessment is the biplane Simpson but it is subjective based on visual endocardial thickening. The speckle tracking is a new method offering the opportunity to track myocardial deformation with excellent reproducibility independently of both cardiac translation and the insonation angle. It is user-independent, less time-consuming and feasible.

doi:10.1016/j.acvd.2011.03.012

Effects of right ventricular pacing on Global Longitudinal Strain: Evolution in short term, mid term and recovery

P. T. B. Degand, D. Cosine, L. Christiaens, D. Herpin
CHU La Miletrie, Poitiers, France

Introduction. – It is well known that right ventricular pacing (VP) can alter left ventricular (LV) function. But few are known in ability of LV recovery after VP.

Objectives. – The aim of this study is to evaluate LV function with 2D strain imaging after 2 months of right VP, immediately and at 2 weeks after stopping VP.

Population and methods. – Population consisted of 20 pts (12 women, mean age 68.6 ± 12, QRS < 120 ms, PR > 120 ms, normal LV ejection fraction) implanted for sinus node dysfunction with dual chamber pace maker(VP < 10%). Five TTE (GE Vivid 7 and Vivid 9) were performed at day 0 (D0) with AAI mode (AAI1) then DDD mode (DDD1), at day 60 (D60) with DDD (DDD2) then AAI mode (AAI 2) and 2 weeks after the end of VP at D75 (AAI 3). LV function was analyzed by global longitudinal strain (GLS) (Speckle tracking). Between D0 and D60, all pts were programmed in DDD with VP > 90%.

Results. – LS decrease significantly at D0 between AAI1 and DDD1 (−19.15 ± 3.4 vs. −16.87 ± 4.1, P = 0.004) but after 2 months of VP (D0–D60), LS is not significantly modified (−16.87 ± 4.1 vs. −14.67 ± 8.1, P = 0.63). At D60 between DDD2 and AAI2, GLS is increased (−14.67 ± 8.1 vs −17.99 ± 2.4, P = 0.048). Between D60 (AAI2) and D75 (AAI3) there is no more significative increase in GLS (−17.99 ± 2.4 vs −18.06 ± 2.7, P = 0.9).

Conclusion. – Longitudinal strain decreases immediately after VP, and recovers immediately after stopping VP. We didn’t find any midterm evolution in GLS. Further studies are needed on a longer period of time to determine if recovery kinesis of GLS is modified with a longer period of pacing.

doi:10.1016/j.acvd.2011.03.013