Valvular disease associated with benfluorex: Prevalence and echocardiographic features

A. Boudes, J.-F. Avierinos, A. Salem, C. Lavoute, Y. le Dolley, G. Habib
La Timone, Marseille, France

Background and objectives. — Restrictive valvular heart disease has recently been reported in patients after benfluorex exposure. However, little is known about its prevalence and echocardiographic features. The aim of our study was to assess the prevalence of benfluorex exposure in patients with restrictive mitral or aortic valve disease and to describe their echocardiographic characteristics.

Methods. — In a single center study, patients with a final diagnosis of unexplained restrictive aortic and/or mitral valvular disease were studied. Only patients with at least moderate valvular regurgitation were included. All echocardiographic records were analysed by two experienced observers. Patients were interrogated for their previous use of benfluorex or other appetite-suppressant drugs.

Results. — Sixty-eight consecutive patients, aged 58 ± 9 years, with restrictive aortic and/or mitral valvular disease were studied, including 63 (93%) women. Among them, 54 (82%) had had previous treatment with appetite-suppressant drugs, including benfluorex alone in 19 (28%) patients, or in combination with another appetite-suppressant drug, mainly dexfenfluramine, in the remaining cases. Among patients with both mitral and aortic involvement, 39 (97%) had been exposed to benfluorex, isolated (n = 14) or in combination with another appetite-suppressant drug (n = 25). Echocardiographic features included combined mitral and aortic regurgitation with restricted valve motion in 40 (59%) cases, and isolated mitral or aortic involvement in 5 and 12 patients, respectively.

Conclusion. — The prevalence of appetite-suppressant drugs exposure is very high in patients with left heart restrictive valvular regurgitation. Multiple drugs exposure is frequent in these patients. Combined aortic and mitral restrictive valve regurgitation is highly suggestive of valvulopathy associated with benfluorex or other appetite-suppressant drug valve disease.

Evaluation of right ventricular function in patients with organic mitral regurgitation

G. Deswarte, C. Vanesson, A.-S. Polge, M. Richardson, A. Vincentelli, P.-V. Ennezat, C. Bauters, C. Foucher, T. le Tourneau

a Hôpital cardiological, Lille, France
b Hôpital Salengro, Lille, France
c Institut du thorax, Nantes, France

Objectives. — The aim of this study was to assess right ventricular (RV) ejection fraction (EF) and its determinants in patients with organic mitral regurgitation (MR) by radionuclide angiography.

Methods. — Two-hundred eight patients (62 ± 13 years, 135 males) with moderate to severe organic MR underwent an echocardiographic examination and left and right ventricular assessment by radionuclide angiography. The left ventricle (LV) was divided into 9 regions to assess regional LV function.

Results. — Mean RV EF was 40 ± 10%, ranging from 10 to 65%. One hundred fifty-one patients were in sinus rhythm, and 57 patients (27%) in atrial fibrillation. Tricuspid annulus S wave velocity measured in a subset of patients (n = 92) correlated weakly with RV EF (r = 0.27, P = 0.018). Fifty-nine patients (28%) had a RV EF < 35%. Patients with RV EF < 35% had lower systolic blood pressure (P = 0.045), larger RV (P = 0.007), higher pulmonary artery systolic pressure (PASP, P = 0.045) and had more diuretics (P = 0.009) compared with those with RV EF > 35%. In univariate analysis, echocardiographic predictors of RVEF were LVEF (r = 0.33, P = 0.001), LV end-diastolic diameter (r = 0.26, P = 0.001) and volume (r = 0.29, P = 0.001), left atrial size (r = 0.22, P = 0.003), mitral E velocity (r = 0.29, P < 0.0001), PASP (r = 0.22, P = 0.004), and aortic stroke volume (r = 0.31, P = 0.007). In the subset of patients with effective regurgitant orifice (ERO) and regurgitant volume quantification RV EF correlated with ERO (r = −0.34, P = 0.005) and regurgitant volume (r = −0.33, P = 0.008). RV EF correlated closely with radionuclide LV septal function (regional LV EF 8: r = 0.49, P < 0.0001). In multivariate analysis, LV septal function (r = 0.43, P < 0.0001) was the main determinant of RV function. LV end-diastolic diameter (r = −0.25, P < 0.0001) and PASP (r = −0.18, P = 0.009) were also independent predictors of RVEF.
Conclusion.— Inorganic mitral regurgitation RV function depends not only on PASP but also on LV remodeling and septal function.

doi:10.1016/j.acvd.2011.03.073
Persistence of abnormal left ventricular systolic function after an aortic valve replacement for to aortic stenosis
B. Feit, E. Donal, B. Lelong, G.-V. Ruggieri, A. Leguerrier
CHU de Rennes, Rennes, France

Background.— Patients with severe aortic stenosis have impaired systolic function, despite a normal LVEF. Global Longitudinal Strain (GLS) is a simple and reproducible measurement of these abnormalities of contraction. Measurements of distortion (strain) in the radial (GRS) and circumferential direction (GCS) are also possible.

Objective.— We want to evaluate the impact of aortic valve replacement for severe symptomatic aortic valve stenosis on the myocardial function recovery evaluated according to a dynamic protocol: at rest and during a standardized stress echocardiography.

Methods.— We prospectively studied 22 patients 6 months after aortic valve replacement. These patients were treated with the same aortic valve bioprosthesis (Magna Ease). These patients gave their informed consent. They were able to provide a standardized effort on a tilting table. Rest echocardiography showed normal functioning of the prosthesis, normal LVEF, without other valvular disease.

Results.— At rest, left ventricular ejection fraction (68.68 ± 9.16%), septal wall end-diastolic thickness (13.23 ± 2.68%), left ventricular end-diastolic diameter (50.4 ± 8.5 mm) were measured at the same time that the GLS (−17.27 ± 3.23%). Despite a normal LV EF, 36.36% of patients have a GLS < −17%. The GCS was on average −20.85 ± 5.16%. 22.7% of patients have a GCS < −17%. Nevertheless most patients have normal GRS (44.69 ± 18.02%). During exercise, most patients in our study do not increase LVEF, despite the good hemodynamic performance of the valve prosthesis (mean trans-aortic gradient at rest was 19.9 ± 7.32 mm Hg, with a mean valve area to 1.31 ± 0.29 cm² at rest and 1.32 ± 0.27 cm² during exercise). Only 31.8% of patients show an increase in LVEF greater than 5% during a planned submaximal effort at 60-watt. The patients should reach a heart rates ~110 ± 10/min and exercise should last over 8 minutes. The GLS does not increase during exercise with a mean value to the effort of −18.05 ± 3.47%. Only 9% of patients show increase of LV longitudinal function during exercise with an increase in GLS of 5% or more.

Conclusion.— After aortic valve replacement for severe aortic stenosis, abnormal LV systolic function can be objectified via measurements of the GCS and GLS.

doi:10.1016/j.acvd.2011.03.074
Low-flow low-gradient aortic stenosis: Prognostic impact and effect of surgery

a CHU La Timone, Marseille, France
b CHU Arnaud-de-Villeneuve, Montpellier, France
c Hôpital Haut-Lévêque, Bordeaux, France
d Hôpital Pontchaillou, Rennes, France
e CHU de Liège, Liège, Belgium

Background.— Low-flow low-gradient aortic stenosis with preserved ejection fraction is a recently described entity, but its prognostic implication has only been little studied.

Methods.— Three hundred and sixty-two patients with severe aortic stenosis, defined by an aortic valve area (AVA) ≤ 0.6 cm²/m², and LVEF ≥ 50% were prospectively included. We performed 2D-strain imaging to assess LV systolic function. Global afterload was evaluated by valvulo-arterial impedance (Zva). Four groups were defined depending on flow and gradient: low flow was defined as a stroke volume index (SVI) ≤ 35 mL/m², and low gradient as a mean gradient (MG) ≤ 40 mmHg.

Results.— Group 1 (normal flow high gradient) represented the majority of our patients (231 patients, 63.5%). Three-year survival was 87%. Referral rate for surgery was 75%. There was a significant improvement of survival among the surgery group (88% vs 75% in the medical group, P = 0.035).

Group 2 (low flow high gradient) represented 46 patients (12.6%). Three-year survival was excellent: 95% (P = ns vs group 1). Referral rate for surgery was 76%. There was a significant improvement of survival among the surgery group (100% vs 76% in the medical group, P = 0.01).

Group 3 (high flow low gradient) represented 57 patients (15.7%). Three-year survival was good: 85% (P = ns vs group 1). Referral rate for surgery was 55%. There was a significant improvement of survival among the surgery group (90.6% vs 74.7% in the medical group, P = 0.04).

Group 4 (low flow high gradient) represented 30 patients (8.2%). Three-year survival was the lowest: 64% (P = 0.04 vs group 2). Referral rate for surgery was 56%. However there was no significant improvement with surgery (3-year survival 61.6% vs 72.7% in the medical group, P = 0.93).

Conclusion.— Low-flow low-gradient aortic stenosis is a rare disease, and its prognosis does not seem to be improved by surgery. However these data need to be confirmed in further studies.

doi:10.1016/j.acvd.2011.03.075
Long-term follow-up of patients with the carcinoid syndrome
N. Mansencal, E. Mitry, P. Rougier, O. Dubourg
Hôpital Ambroise-Paré, Boulogne, France

Background.— Carcinoid heart disease (CHD) may occur in patients presenting with carcinoid tumor and carcinoid syndrome. Studies evaluating the echocardiographic follow-up of these patients remain rare. The aim of this prospective study was to assess the progression of CHD.

Methods.— We studied 90 consecutive patients presenting with carcinoid tumor and carcinoid syndrome. All patients underwent annual transthoracic echocardiographic studies and biological carcinoid markers. We used a previous validated score of CHD severity.

Results.— At baseline, prevalence of right- and left-sided CHD was 32% and 8%, respectively, whereas at the end of follow-up (mean FU: 38 months), this prevalence was respectively 52% and 20%. Correlations were strong between urinary 5-HIAA and CHD score (r = 0.86, P < 0.0001). All patients with at least 3 years of carcinoid syndrome and increased level of urinary 5-HIAA presented with echocardiographic evidence of CHD. Interestingly, after 3 years of echocardiographic follow-up of treated patients with carcinoid syndrome but without CHD, no patients developed CHD.

Conclusion.— Prevalence of CHD remains high and increases during follow-up. Carcinoid heart disease progresses over time, highlighting the need for echocardiographic follow-up once the diagnosis of carcinoid syndrome is made.

doi:10.1016/j.acvd.2011.03.076