Contribution of an educational program in “sexuality and affectivity” at the cerebral paralysed adolescent

C. Bensousan*, a, B. Vuagnat, a, T. Jodry b, Y. Mohammad b

Keywords: Cerebral palsy; Sexuality; Adolescent; Affective life; Handicap

Objective.— To assess the contribution of an educational program on “sexuality and affectivity” for the cerebral paralysed adolescent.

Population and methods.— Seventeen adolescents participated in an educational program on affective and sexual life in 2009/2010. Population was composed of 7 quadriplegics, 4 diplegics, 3 hemiplegics and 1 cerebellar syndrome. The age ranged from 14 to 17 years. The program was elaborated and led by an interdisciplinary team: educational, paramedical and specialized medical team.

Results.— At the end of the program, the experiences were in agreement with the objectives in 70% of answers: 6% of items were in the course of acquisition, 10% were not acquired and 15% of the answers were not exploitable.

The authors emphasize the analytical results of the experiences by item and propose the extension of this program in younger cerebral palsy patients.

Further readings


Achondroplasia in physical medicine and rehabilitation: A case report

A. Anselmetti*, a, M.C. D’anjoub, b, C. Leone b, V. Gautheron b

Keywords: Achondroplasia; Constriction of the foramen magnum; Spinal cord compression

Achondroplasia is the most frequent form of chondrodysplasia with a prevalence of one child in every 15,000. Mutation of FGFR3 gene, growth hormone fibroblastic receptor, expressed in temporary cartilage, is detected in achondroplasia by molecular analysis. Child with achondroplasia is characterized by short limbs, macrocephaly, and hyperlordosis. Neurological complications may appear due to narrow vertebral canal.

In our center, 3 children suffer from achondroplasia. Diagnosis was confirmed by molecular analysis. All three of us have disproportionate short stature and delayed motor milestones. In two cases, a cranio-cervical junction compression with neurological impact was treated by neurosurgery. Orthopaedic complications and respiratory complications encountered.

Medical care in achondroplasia may be organized by expert centers. Physical medicine and rehabilitation is useful for multidisciplinary coordination and to lead specific rehabilitation.


Problems of schooling of disabled children in Benin


Keywords: Disability; Education; Child; Rehabilitation; Benin

Schooling of disabled children (key issue of social integration) is a challenge for communities and governments.

Objective.— To analyze problems of education of disabled children in Benin.

Method.— This study involved a descriptive and analytical retrospective collection from October 2004 to December 2009 and a prospective cross sectional study from January to July 2010. It included 450 disabled children followed in community-based rehabilitation centers, in Benin (in the Zou department) and attending regular schools.

Results.— Handicap was predominantly motor (70.9%), auditory (17.6%), mental (5.6%) and visual (1.6%). Main etiologies found were perinatal encephalopathy (fetal suffering by neonatal anoxia, prematurity, cerebral malaria), poliomyelitis sequelae and iatrogenic sciatica nerve injuries. Schooling of these handicapped children came up against difficulties; integration and accessibility to the school, educational (understanding, memory, graphics, reading, calculation) at 19 to 28% of the cases, disruptions of the school results (34.7% tolerable results, 33.3% weak results), irregularity in class (47.4%), numerous repetitions (more than twice at 33.3% of children), stop of education (15.1%). Factors influencing the school success of these children were the type of deficiency (deficient motor has more good results), therapeutic burden (good results for 47% of children readapted and 17.2% of non readapted with P = 0.000) and regularity (weak results for 79.3% of stragglers and 90% of the irregulars with P = 0.000), 24.7% of these children would have done better in a specialized school.

Conclusion.— Schooling of disabled children stumbles upon the rocks of all orders in Benin. So it is urgent to establish an ambitious national policy for children with disabilities.

Further readings


Goal Management Training for the rehabilitation of executive functions after traumatic brain injury: A pilot study
CO33-007–EN

Adaptation of the Goal Management Training in children for the rehabilitation of executive functions

A. Krasny-Pacini a,*, J. Limond b, J. Miller a, L. Schrieff c, J. Evans b, J. Hiebel d, K. Bendjelida e, M. Periot f, M. Chevignard d

a Secrétariat du Dr-Hiebel, centre de réadaptation Clémenceau, CHU de Strasbourg et laboratoire ER 6 hôpital Salpêtrière Paris, 17 rue Ehrmann, 67000 Strasbourg, France
b Department of psychological medicine, mental health and wellbeing, Gartnavel Royal Hospital, Glasgow, United Kingdom
c ACSENT laboratory, department of psychology, university of Cape Town, Cape Town, South Africa
d Centre de réadaptation fonctionnelle Clémenceau, Strasbourg, Strasbourg, France
e Unité mobile traumatisés crâniens (EMO-TC), Mulhouse, Mulhouse, France
f Service de rééducation des pathologies neurologiques acquises, hôpital national de Saint-Maurice, Saint-Maurice, France

*Corresponding author.

Keywords: Executive functions; Children; Traumatic brain injury; Rehabilitation; Remediation; School

The Goal Management Training (GMT), developed by Levine et al. is a rehabilitation technique aiming to improve executive functioning after traumatic brain injury (TBI). The full GMT is comprised of 8 modules, 2 hours each, presented on PowerPoint. GMT contains many different notions, stories illustrating problems encountered after TBI, exercises aiming to improve awareness and strategies such as the “Stop–State–Split–Do–It–Check” cycle. The method is largely used in the United Kingdom and has recently proved its efficiency in adults with TBI.

We have modified the GMT according to the following goals:

– adapt it to children aged 9 to 14: removing notions which are too abstract (e.g. present-mindedness), too difficult to apply (e.g. relaxation), or that are not part of the child’s preoccupation (e.g. regrets about a past decision), simplifying the vocabulary (e.g. “Slips” translated into “Oops errors”), and actualizing it (e.g. there are no longer “blackboards” in schools so the “mental blackboard” concept was changed to “mental note book”);

– simplify and order the modules differently, maintaining the key notions after discussing them with teams using GMT in clinics and in research in Glasgow and Cambridge, and analyzing the literature that tested particular components of the GMT;

– make the method more fun and child-friendly: replacing exercises by games (e.g. ‘Simon says’ for Slips), and using drawings instead of the written text;

– improve awareness by changing the stories so that the child could identify better with the heroes;

– make the child an actor of his rehabilitation by weekly “missions” to be performed between sessions, some of which involving prospective memory;

– integrate Ylvisaker’s principles of school management for children with TBI;

– promote generalization by adding practice modules involving cooking, school-like work and multiple errands type tasks;

– fit each module to the French standard 45 minutes rehabilitation session time;

– promote transfer to activities not trained by the rehabilitation and to different contexts by regularly sending a chapter of an e-booklet to parents, teachers and school aids explaining the content of each module and how to apply it.

Further readings

Research made with the support of SOFMER-IPSEN.


CO33-008–EN

Motor function measure: Construction of a short form (MFM-20) for children with neuromuscular disease aged between 2 and 6

C. De Latre a,*, C. Payan b, C. Berard d

a HFME, l'escale, service de MPR pédiatrique, 59, boulevard Pinel, 69677 Lyon, France
b Institut de myologie, Paris, France
corresponding author.

Keywords: Outcome measure; Neuromuscular disease; Child; Motor function

Background. – The natural history of each neuromuscular disease must be known to measure objectively the impact of new therapeutics in clinical trials especially for young children.

The motor function measure (MFM) is a validated tool designed for neuromuscular diseases, applicable whatever the severity in ambulant and non-ambulant patients. MFM was not validated for the youngest before 6 years. The objective

CO33-009–EN

A. Krasny-Pacini a,*, J. Limond b, J. Miller a, L. Schrieff c, J. Evans b, J. Hiebel d, K. Bendjelida e, M. Periot f, M. Chevignard d

a Secrétariat du Dr-Hiebel, centre de réadaptation Clémenceau, CHU de Strasbourg et laboratoire ER 6 hôpital Salpêtrière Paris, 17 rue Ehrmann, 67000 Strasbourg, France
b Department of psychological medicine, mental health and wellbeing, Gartnavel Royal Hospital, Glasgow, United Kingdom
c ACSENT laboratory, department of psychology, university of Cape Town, Cape Town, South Africa

*Corresponding author.

Keywords: Executive functions; Children; Traumatic brain injury; Rehabilitation; Remediation; School

The Goal Management Training (GMT), developed by Levine et al. is a rehabilitation technique aiming to improve executive functioning after traumatic brain injury (TBI). The full GMT is comprised of 8 modules, 2 hours each, presented on PowerPoint. GMT contains many different notions, stories illustrating problems encountered after TBI, exercises aiming to improve awareness and strategies such as the “Stop–State–Split–Do–It–Check” cycle. The method is largely used in the United Kingdom and has recently proved its efficiency in adults with TBI.

We have modified the GMT according to the following goals:

– adapt it to children aged 9 to 14: removing notions which are too abstract (e.g. present-mindedness), too difficult to apply (e.g. relaxation), or that are not part of the child’s preoccupation (e.g. regrets about a past decision), simplifying the vocabulary (e.g. “Slips” translated to “Oops errors”), and actualizing it (e.g. there are no longer “blackboards” in schools so the “mental blackboard” concept was changed to “mental note book”);

– simplify and order the modules differently, maintaining the key notions after discussing them with teams using GMT in clinics and in research in Glasgow and Cambridge, and analyzing the literature that tested particular components of the GMT;

– make the method more fun and child-friendly: replacing exercises by games (e.g. ‘Simon says’ for Slips), and using drawings instead of the written text;

– improve awareness by changing the stories so that the child could identify better with the heroes;

– make the child an actor of his rehabilitation by weekly “missions” to be performed between sessions, some of which involving prospective memory;

– integrate Ylvisaker’s principles of school management for children with TBI;

– promote generalization by adding practice modules involving cooking, school-like work and multiple errands type tasks;

– fit each module to the French standard 45 minutes rehabilitation session time;

– promote transfer to activities not trained by the rehabilitation and to different contexts by regularly sending a chapter of an e-booklet to parents, teachers and school aids explaining the content of each module and how to apply it.

Further readings

Research made with the support of SOFMER-IPSEN.