Calculation and number processing troubles in patients with traumatic brain injury

M. Villain*a, C. Tarabon-PrevostTb, E. Bayenb, P. Pradat-Diehlb

a Service de médecine physique et réadaptation, ER6 UPMC, AP–HP, groupe hospitalier Pitié-Salpêtrière, 47, boulevard de l’Hôpital, 75013 Paris, France
b Service de médecine physique et réadaptation, hôpital de la Salpêtrière, Paris, France

*Corresponding author.

Keywords: Traumatic Brain Injury; Ecological assessment; Calculation; Number processing

Cognitive impairment is a common and prominent sequela of traumatic brain injury (TBI). Number processing and mental arithmetic require the intervention of multiple cognitive functions. These abilities may be altered, thereby compromising patient autonomy. However, these disorders are rarely evaluated. Validated tests often lack sensitivity unsuited for these patients. The aim of our study is to assess number processing and calculation in patients with TBI and their impact on daily activities.

Materials and methods: Using a numerical processing battery (BENQ), we assessed the long-term effects of severe or moderate TBI in patients who returned home. BENQ is a standardized ecological scale, which includes 11 tasks corresponding to manipulation of numbers in situations similar to those of everyday life: telling time, estimating prices and making change. The results are compared with an analytic battery: EC301 and an estimation task extracted from TLC2.

Results: We included 8 patients aged from 29 to 57 years old (mean 44 years old). The average total score on the BENQ is 35.87 on 41 (SD = 2.85). Three subjects obtained a pathological score in both the BENQ and the estimation task of TLC2. The patient who had the lowest score at the BENQ also obtained the lowest score in the EC301. Specific difficulties in estimation and problem resolving emerged from the evaluation.

Discussion: We have highlighted in ecological situations calculation and number processing deficits in patients with traumatic brain injury. The BENQ is therefore a good assessment tool in patients with TBI. Thus, deficits can be objectively and appropriately rehabilitated. Based on our study, this test is currently being revised in order to improve its psychometric qualities.

Conscious behavior after traumatic brain injury: Anatomofunctional support and therapeutic prospects

J.-J. Lemaire*a,*, B. Pontierb, J. Costea, T. Gillarta,*, F. Feschet4, J. Gabrillargues5, E. Coudeyre1, J. Lautaud6

a Service de neurochirurgie, IGCNC, université d’Auvergne, CHU de Clermont-Ferrand, 63000 Clermont-Ferrand, France
b Service de MPR, IGCNC, université d’Auvergne, CHU de Clermont-Ferrand, Clermont-Ferrand, France
c IGNC, département d’anesthésie-réanimation, université d’Auvergne, CHU de Clermont-Ferrand, Clermont-Ferrand, France
d IGNC, université d’Auvergne, Clermont-Ferrand, France
e Unité de neuroradiologie, IGCNC, université d’Auvergne, CHU de Clermont-Ferrand, Clermont-Ferrand, France
f Service de MPR, CHU de Clermont-Ferrand, Clermont-Ferrand, France

* Corresponding author.

Keywords: Coma; Consciousness; Tegmentum; Thalamus; Bashal ganglia; Default-mode network; Precuneus

Objective: Most brain-injured patients with severe and chronic consciousness disorders are in a therapeutic deadlock. This concerns mainly vegetative or neurovegetative patients, and patients in minimally conscious state. Chronic coma is an exceptional condition; certain conditions of akinetic mutism, which are more frequent, can be included in severe and chronic consciousness disorders. The goal is to review the functional connectivity of conscious behaviours and relational arousal, in particular since the introduction of modern clinical imagery. Description: The connectivity described in this work relies mainly on two magnetic resonance imaging structural studies of the deep brain: a high-resolution atlas (voxel = 250 × 250 × 4.7 mm3; 4.7–Tesla) of human anatomical piece; an extensive study of deep fascicles (diffusion tensor imaging and tractography; voxel = 1.25 × 1.25 × 1.5 mm3; 3–Tesla) on 6 healthy subjects. The results show the support of the functional connectivity of consciousness that involves the mesencephalopontine tegmentum, the basal ganglia, the hypothalamus and the thalamus. These deep located regions are connected with the cortex through three main paths: thalamic, ganglionic and rostroventral. The thalamic path rises from the tegmentum, uses the central tegmental tract, and reaches the reticular and dorosomedial thalamus; from the thalamus it spreads to the cortex, the limbic system, the striatum and the pallidum. The ganglionic path uses the lenticular

© 2019 Elsevier Masson SAS. All rights reserved. Document downloaded on 08/01/2019. It is forbidden and illegal to distribute this document.
nucleus and projects to the cortex. The rostro-ventral path goes through the ventral tegmental area (below the thalamus) and the posterolateral hypothalamus, and then reaches the frontobasal region; this path uses the basal forebrain bundle.

Prospective. The knowledge of structures controlling conscious behaviours can enable to better understand different types of severe and chronic consciousness disorders. This also could allow proposing adjusted therapeutic options including physical medicine, rehabilitation, pharmacology and neuromodulation.

CO08-002-EN

Apathy and impulsivity after traumatic brain injury

A. Arnould a,⁎, L. Rochat b, P. Azouvi c, M. Van Der Linden b,⁎

a Service de médecine physique et de réadaptation, hôpital Raymond-Poincaré, 104, boulevard Raymond-Poincaré, 92380 Garches, France

b Unité de psychopathologie et neuropsychologie cognitive, université de Genève, Geneva, Switzerland

c Service de MPR, hôpital Raymond-Poincaré, Garches, France

⁎Corresponding author.

Keywords: Apathy; Impulsivity; Psychosocial reintegration; Traumatic brain injury

Introduction. Apathy and impulsivity are two disorders frequently encountered after severe traumatic brain injury (TBI). However, there has been little research on the underlying nature of these behavioural modifications.

Objective. To assess components of apathy and impulsivity after TBI, their psychosocial consequences, and the burden experienced by the relatives.

Method. 38 close relatives of severe TBI patients were asked to complete four questionnaires: the UPPS impulsivity scale, short version [1], the apathy inventory [2], the Sydney psychosocial reintegration scale [3] and the Zarit Burden Inventory [4].

Results. TBI patients showed on the UPPS significantly higher levels of urgency, lack of premeditation, and lack of perseverance, and a significant decrease of sensation seeking, as compared with their pre-injury status (P < .05). Apathic symptoms were reported, concerning the three dimensions of apathy. Psychosocial problems, and the relatives’ burden both significantly and positively correlated with loss of initiative (P < .01) and with all dimensions of impulsivity (P < .05), except with sensation seeking. A significant positive correlation was found between lack of perseverance on the one hand and lack of initiative (P < .01) and loss of interest (P < .05).

Discussion. TBI patients showed, in comparison with pre-injury, a significant increase of both impulsivity and apathy. These modifications were significantly correlated with psychosocial problems and the relatives’ burden. The underlying cognitive and motivational bases of these changes need to be further studied.

References

CO08-004-EN

Ecological assessment of cognitive functions in children with acquired brain injury: A systematic review

M. Chevignard a,⁎, C. Soo b, J. Galvin b, C. Catroppa b, S. Eren b

a Service de rééducation des pathologies neurologiques acquises de l’enfant, pôle de rééducation et de réadaptation de l’enfant, hôpitaux de Saint-Maurice, 14, rue du Val d’Othe, 94410 Saint-Maurice, France

b Murdoch Childrens Research Institute, Melbourne, Australia

⁎Corresponding author.

Keywords: Acquired brain injury; Child; Assessment; Cognitive; Ecological

Childhood acquired brain injury (ABI) often leads to impairment in cognitive functioning, resulting in disabilities in both the home and school environment. Assessing the impact of these cognitive deficits in everyday life using traditional neuropsychological tests has been limiting. The aims of this review were to:

(i) systematically review the literature in order to identify existing ecological assessments of cognitive functioning that have been used in childhood ABI;

(ii) describe the identified measures in terms of their psychometric properties, clinical utility and overall advantages and disadvantages.

Method. Eight databases were searched (until May 2010) for scales (tests or questionnaires) which are:

– focused on ecological assessment of cognitive functioning;

– applicable to children up to 18 years of age;

– with published data in an ABI population;

– in English. The title and abstract of all papers were reviewed independently by two reviewers.

Results. Database searches yielded a total of 12,475 references, of which 15 scales met the inclusion criteria for the review, focusing on executive functions (n = 8), memory (n = 2), general cognitive abilities (n = 2), visuospatial skills (n = 2) and attention (n = 1). The tasks consisted of four tasks using observation of actual performance in a natural environment, five questionnaires and six functional “paper and pencil” type tasks, developed with ecological validity in mind. While all tests had some information on their psychometric properties, there was a lack of information in many cases. However, discriminant validity