Holistic early rehabilitation for children after traumatic brain injury (TBI) is the key to better recovery and quality of life. Many children after TBI recover relatively well but our 20-year experience shows that most of them need some special engagement in reentering school programs.

After intensive early treatment in acute settings the child with TBI sequelles is admitted to the rehabilitation institution. The individualised rehabilitation program focuses on typical issues of mobility, self-care, feeding, cognitive functions, communication, behaviour and social interaction. Rehabilitation process moves from impairment towards helping the patient finding ability to compensate for the functional loss. By using functional outcome measures and assessment tools, goals of rehabilitation process are planned. Interdisciplinary team including medical doctor, specialist of physical and rehabilitation medicine, nurses, physiotherapist, occupational therapist, psychologist, speech therapist, engineers of orthotics and prosthetics, social worker has to set clear, specific and realistic rehabilitation goals for the patient and monitor the effectiveness of interventions.

Program for school (re)entry begins already in the phase of early intensive rehabilitation in rehabilitation institution. In the process of early rehabilitation program teachers of hospital school are involved. They work step by step with children in collaboration with other team experts, introducing gradually school curriculum contents to individual work with the child. Before school (re)entry a team meeting is organized with teachers from the school, which the child will enter. Detailed information to the teachers is given, short and long term education plans are made. One member of the team, psychologist or speech therapist, is appointed as the contact expert for the school program. Team meetings of rehabilitation team and school experts are planned, at least twice in the first year. Parents and children are invited and asked to give their comments. The duration of follow up depends on child school success but it lasts at least 2 years.

Conclusion:– Early intensive holistic interdisciplinary rehabilitation program is the way to better outcome after TBI in children. For most of the children the (re)entry program has to be individually adapted, gradually developed through close collaboration between rehabilitation team, family and school.

doi:10.1016/j.rehab.2011.07.216

CO28-009–EN

Comparison of the benefit on fatigue and quality of life of a short programme of physical training for multiple sclerosis between two groups of high or low EDSS level

M. Le Fort a,∗, T. Baillieux b, N. Delpech b, M. Finger c, B. Perrouin-Verbe d

a Service de MPR neurologique, CHU de Nantes, 85, rue Saint-Jacques, 44093 Nantes cedex 01, France
b Faculté des sciences du sports, Poitiers, France
c Service de MPR neurologique, centre hospitalier Cholet, Cholet, France
d Service de MPR neurologique, CHU de Nantes, Nantes, France

∗Corresponding author.

Keywords: Multiple sclerosis; EDSS; Physical training

Introduction and aim.– The benefit of physical training (PT) has been shown for multiple sclerosis (MS), often for EDSS scores lower than 6.5. This work poses the hypothesis of an equivalent benefit independently of the level of activity limitations thanks to the choice of programmes according to the EDSS score.

Patients and method.– Patients with MS included at the University Hospital of Nantes, parallel work with the same protocol at the Hospital of Cholet (49). Two groups: A (EDSS score = 6 to 8; n = 7) and B (EDSS score = 1 to 5.5; n = 4). All declare a disabling fatigue. PT protocol: 3 individually trained sessions per week:

- muscular strengthening according to the clinical presentation;
- short rally with a wheelchair (A), endurance on cycloergometer (B);
- physical adapted (play) activity chosen with each patient.

Pre- and post-PT assessment: fatigue (EIF-SEP scale) and quality of life (SEP-59) globally and compared between the two studied groups. Statistics tests: Student t-test (parametric data), Mann-Whitney U-test and Wilcoxon-test (non-parametric data).

Results.– Mean EDSS score: A-group = 6.6 ± 0.7; B-group = 4.1 ± 1. Fatigue (EIF-SEP): improvement after PT for both groups (P < 0.05) for the “social role” and “physical” dimensions with no significant difference between the two groups; reduction for these two dimensions and for the “social link” dimension of the difference of mean score between the two groups before and after PT. Quality of life (SEP-59): global improvement for 8 out of 14 categories, with no significant difference between the two groups.

Discussion.– This work, that may be considered as a pilot-study for a larger study, shows that a PT program, adapted according to disabilities and activity limitations, is able to improve on “subjective” data linked to fatigue and quality of life the health level of patients with MS independently of the EDSS score.

Further reading


CO28-010–EN

Reflexions for the implementation of a Multidisciplinary program for chronic back pain

D. Kupper a,∗, J.-P. Gallice b, S. Genevay c

a Cabinet d’ergothérapie, 1714, route d’Arculinge, 74930 Reignier, France
b Physiothérapie, hôpitaux universitaires de Genève, Genève, Switzerland
c Division de rhumatologie, hôpitaux universitaires de Genève, Genève, Switzerland

∗Corresponding author.

Keywords: Low back pain; Chronic conditions; Multidisciplinary programs; Therapeutic education; Personal strategies

Multidisciplinary functional rehabilitation programs are considered to be the treatment of reference for patients with chronic low back pain. Elaboration of such programs is complex, however, and little description is found in the literature. To serve as reference for teams interested in this work of elaboration, we present the approach followed to develop the Prodig© program (PROgramme Dos des Institutions Universitaires Genevoises).

The preparation phase, consisting of focus groups with patients and a review of the literature, allowed to identify essential concepts such as the superiority of the biopsychosocial model, the understanding of back pain as a dysfunction, the importance of remaining physically active, the necessity of improving crisis management by taking into account fear-avoidance mechanisms, and the importance of a clear, coherent information to increase therapeutic adhesion. This phase continued with multidisciplinary reflection and the definition of key concepts. It is essential to have a unified message to which every team member adheres. Thus, regardless of individual senses of identity, a coherent and therapeutic message can be delivered.

The next phase involved the selection of appropriate tools and techniques. Using a cognitivo-behavioral approach, the sessions are personalized according to objectives negotiated with each patient in the beginning of program, based on initial assessments of expectations, handicaps, physical abilities, psychic consequences, degree of kinesiophobia and work status. The concept of back pain as a musculoskeletal dysfunction is clarified during educational sessions, allowing a better understanding of the role of movement. The patient gains confidence via gradual exposure to situations perceived as dangerous. An evolution towards autonomy is favored by a personalized program of exercises and ergonomic techniques. Patients are invited to maintain a notebook with personally helpful information to aid them in managing future recurrences. This work permitted the creation of a multidisciplinary program in terms of content and interaction between professionals, resulting in a rich and unified message to increase the efficiency of the program Prodig©.