Influence of different types of sockets on the range of motion of the hip joint by the transfemoral amputee

Influence de différents types d’emboîtures sur les amplitudes articulaires de la hanche de l’amputé transfémoral

R. Klotz a,*, B. Colobert b, M. Botino c, I. Permentiers c

a Centre de médecine physique et de réadaptation de la Tour de Gassies, 33523 Bruges cedex, France
b Proteor handicap conseil, recherche et développement, 6, rue de la Redoute, 21850 Saint-Apollinaire, France
c Proteor handicap conseil, Bordeaux, Z.I. Bersol, 5, allée Newton, 33600 Pessac, France

Received 15 December 2010; accepted 16 August 2011

Abstract

Purpose. – To compare the individual influence of different types of socket designs on the hip’s range of motion in transfemoral amputees.

Patients and methods. – We studied the kinematic parameters of the hip joint for patients with transfemoral amputation under four experimental conditions: without a socket, with a quadrilateral socket, an ischial containment socket, an ischial-ramal containment socket. An opto-electronic system was used to record the movements in the frontal and sagittal planes for a 3D movement analysis.

Results. – The hip’s range of motion is always significantly restricted with the sockets, regardless of their type, compared to the situation without a socket (P < 0.05). The adduction and extension movements are the most restricted. The global amplitude (i.e., the sum of all the ranges of motion) is significantly higher for the ischial-ramal containment socket (139.5°) compared to the ischial containment socket (125.4°, P = 0.002) and the quadrilateral socket (127.3°, P = 0.01). No comparable study exists in the literature, especially for the ischial-ramal containment socket.

Conclusion. – The ischial-ramal containment socket seems to be the most interesting type of socket in terms of the criterion studied. It still remains to identify the possible functional improvements that this design would provoke during gait and during daily activities.

Keywords: Amputees; Socket design; Hip joint; Range of motion; Transfemoral; Biomechanics; Prosthesis

Résumé

Objectif. – Comparer l’influence isolée de différents types d’emboîture sur les amplitudes articulaires de la hanche de l’amputé transfémoral.

Patients et méthodes. – Nous avons étudié les paramètres cinématiques de l’articulation de la hanche chez quatre patients amputés transfémoraux dans quatre conditions : sans emboîture, avec emboîture quadrangulaire, à ischion intégré et à branche ischiopubienné incluse. La capture des mouvements a été enregistrée dans le plan frontal et le plan sagittal par un système optoélectronique 3D d’analyse du mouvement.

Résultats. – Les amplitudes articulaires de la hanche sont toujours significativement limitées avec les emboîtures, quel que soit leur type, par rapport à la situation sans emboîture (p < 0.05). Ce sont les mouvements d’adduction et d’extension qui sont les plus limités. L’amplitude globale (somme des amplitudes) est significativement supérieure pour l’emboîture à branche ischiopubienné incluse (139.5°) comparée à l’emboîture à ischion intégré (125.4°, p = 0.002) et à l’emboîture quadrangulaire (127.3°, p = 0.01). Il n’existe dans la littérature aucune étude comparable, faisant notamment référence à l’emboîture à branche ischiopubienné incluse.

Conclusion. – L’emboîture à branche ischiopubienné incluse est celle qui paraît la plus intéressante sur le critère étudié. Il reste à mettre en évidence l’amélioration éventuelle qu’elle apporterait à la marche et en situation écologique.

© 2011 Elsevier Masson SAS. Tous droits réservés.

Mots clés : Amputé ; Emboîture ; Hanche ; Amplitude de mouvement ; Biomécanique ; Prothèse

* Corresponding author.
E-mail address: tklotz.gassies@ugecamaq.fr (R. Klotz), briac.colobert@proteor.com (B. Colobert), iris.permentiers@proteor.com (I. Permentiers).

1877-0657/S – see front matter © 2011 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.rehab.2011.08.001
1. English version

1.1. Introduction

The gait of unilateral transfemoral amputees has already been studied by many authors [3,7,8]. These studies are based on physiological data, such as oxygen consumption, or kinematic data from kinematic or goniometric techniques. Kinematic parameters are thus the evidence of the total integration of a prosthesis in the new gait pattern imposed by the absence of the limb.

A leg prosthesis is traditionally composed of three components: the foot, the knee, and the socket. Van Der Linde et al. [20] conducted a systematic review of the literature on the contributions of these components. The associations and interactions of these components determine the way in which the patients are going to use their prostheses in daily life: while walking, sitting upright, sitting, going up/down stairs, and changing from a sitting position to a standing position. Several authors [2,3] have shown that, for non-amputees, the functional capacities of the hip joint determine the efficiency and the comfort of these activities.

The socket is the part of the prosthesis that interacts with the stump. It has the functional objective of transmitting the movements of the residual limb to the prosthetic elements, despite skin sliding or the piston effect. Like the prosthetic feet and knees, the socket has benefited from customary research and innovation [20]. At the beginning of the 1980s, Long [15] developed ischial containment sockets; until then, the quadrilateral sockets were the sockets most commonly used. An ischial containment socket envelops the ischiium; in the quadrilateral socket, the ischium presses vertically on the sub-ischial shelf [8]. Sabolich [18] suggested that the ischial containment socket, unlike the quadrilateral socket, aims to put the femur into the adduction position. This position should allow gait efficiency to be improved through gluteus medius muscle action. The X-ray-based measurements taken by Hachisuka et al. [10] confirm the femur is more in the medial position using the ischial containment socket.

Several studies have used subjective evaluations to compare the ischial containment sockets to the quadrilateral sockets. Flandry et al. [7] used questionnaires and found that the subjective evaluations of patients approve the ischial containment sockets for comfort, balance and prosthesis control. Hachisuka et al. [10] also reported a better subjective comfort for ischial containment sockets, especially in the sitting position. Unlike these studies, Boonstra et al. [3] found that the evaluation of the quadrilateral sockets was better than that of the ischial containment sockets.

In terms of the comparison of physiological parameters, Gailey et al. [8] showed a reduced energy consumption while walking, using an ischial containment socket instead of a quadrilateral socket. These results confirm the results of Flandry et al. [7], who also noticed an improvement in the metabolic cost of walking, as well as a reduction of the trunk’s lateral compensation movements, with an ischial containment socket. However, the most recent study by Hachisuka et al. [10]

did not reveal a significant difference in the metabolic output while walking in relation to the socket used. Taking different walking speeds into account suggests that the advantage of the ischial containment socket is demonstrated at high walking speeds [3].

Marlo Ortiz [6] modified the concept of the ischial containment socket and proposed the ischial-ramal containment socket, also called the Marlo Anatomical Socket (MAS®) (Fig. 1). This socket no longer envelopes the ischiium, but rather the ischio-pubic ramus. The ischio-pubic ramus containment surface rises 2 or 3 cm over the ischio-pubic ramus. Its width is 5 or 6 cm. The medial edge is under the ischio-pubic ramus. The anterior trim line is positioned at the level of pubic ramus and then rises to 0.6 cm under the anterior superior iliac spine; it follows the inguinal fold to link with the lateral wall, which includes trochanter. At the posterior level, the median point in the form “U” is positioned 1.2 cm under the ischio-pubic ramus for men and 2.5 cm for women. Laterally, the form “U” joins the external wall.

In the literature, we did not find studies investigating this new type of socket, although Hagberg et al. [11] underlined the advantages of doing so in 2005. Still, this new type of socket is relatively recent in terms of the transmission speed of new techniques in orthopedics, especially since its production is complex, involving human and material costs that are now poorly valorized.

The hip is the vector transmitting the forces from the patient to his/her prosthesis, and measuring the range of motion in the hip is a good way to quantify the patient’s incapacities [2]. For this reason, we chose to study specifically the hip’s range of motion in order to determine which socket is the least restrictive. In order to identify the influence of a prosthesis...
component, one of these components can be modified without modifying the others [7] or one of these components can be studied independently of the others [14]. In our research, we studied the individual influence of the different types of sockets on the hip’s active range of motion in transfemoral amputees.

1.2. Patients and methods

We used 3D movement capture technology to compare the influence of the various sockets on the hip’s range of motion in transfemoral amputees.

1.2.1. Studied population

The population was composed of four male patients, with an average age of 51 years, who all were unilateral transfemoral amputees for at least 5 years. Three cases were traumatic amputations, and one case was a vascular amputation. They all wore their prosthesis daily, at least 8 hours per day. Three patients had an ischial-ramal containment socket, and one had an ischial containment socket. These four patients participated in the study voluntarily. This research project was validated by the Comité de protection des personnes (People Protection Committee) at the University of Bordeaux A. Table 1 provides the patient characteristics.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Weight (kg)</th>
<th>Height (cm)</th>
<th>Age (years)</th>
<th>Stump length (cm)</th>
<th>Controlateral crural segment length (cm)</th>
<th>Shortening (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81</td>
<td>183</td>
<td>42</td>
<td>32.5</td>
<td>43.5</td>
<td>25.3</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>165</td>
<td>42</td>
<td>29</td>
<td>34</td>
<td>14.7</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>158</td>
<td>57</td>
<td>27</td>
<td>33</td>
<td>18.2</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>185</td>
<td>63</td>
<td>22.5</td>
<td>37</td>
<td>39.2</td>
</tr>
</tbody>
</table>

1.2.2. Socket production protocol

Each patient had the three socket types studied produced for them individually: a quadrilateral socket, an ischial containment socket, and an ischial-ramal containment socket. The thermoforming of the sockets was performed with Orthochoc® plastic. The same tightness rating were used, as well as the same type of Stepline® liners with distal attachment. All the modifications were performed by the same ortho-prosthetist, who was experienced and trained in various techniques.

1.2.3. Equipment

The tests were recorded using an Elite® system (BTS, Italy), with 12 cameras functioning at 200 Hz.

1.2.4. Our model

We used a model with two articulated rigid solid segments, representing the residual limb and the pelvis, to measure the kinematics of the hip movements. A total of 10 retro-reflective markers were placed the body: three markers on the thigh, two markers on the left and right anterior superior iliac spine, two markers on the trochanters, one marker between the two sacral dimples, and two markers on distal attachment of the liner (Fig. 2).

1.2.5. Measurement protocol

Four experimental conditions were used: without a socket, with a quadrilateral socket, with an ischial containment socket, and with an ischial-ramal containment socket. In order to neutralize the influence of the other prosthesis components (i.e., foot and knee), all tests were performed using only the socket. Active flexion-extension movements and active abduction/adduction movements were performed under the four conditions. The patients were asked to make the movements as ample as possible, while holding onto a fixed support (i.e., something similar to a bike’s handlebars), placed before them. The resting position of the residual limb in the different experimental conditions may fluctuate and thus cannot be used as the original position. For this reason, we preferred to use the vertical axis as our reference.
The joint amplitudes were calculated based on the movements, which continued for 30 seconds. These movements were repeated three times, with a rest period between each trial. The four experimental conditions were tested in a random order.

The patients were outfitted with a liner with distal attachment for all the experimental conditions. In fact, the tests performed without a liner in a pre-study showed us the significance of the deformations of the residual limb. These deformations cannot be taken into account in an articulated, rigid, solid system model of the coxofemoral joint. The liner allowed us to retain the soft tissues of the stump. Marks were traced on the liner to reproduce the positions of the retro-reflective markers during the four experimental conditions. The patients did not remove their liners between each socket change. The use of transparent plastic permitted the motion capture operator to place the retro-reflective markers on the socket in the locations of the marks on the liner.

1.2.6. Primary evaluation criterion

The primary evaluation criterion was the global amplitude of the hip. This parameter was calculated by adding the hip joint amplitudes for the various planes. Sochart and Porter [19] used this parameter in their study. This parameter has the advantage of reflecting the hip’s mobility with a single value.

1.2.7. Measurement precision

Several articles have studied the precision of the motion capture systems for gait analysis [16]. The errors generally reported for the “Helen Hayes” models [5] are under 5°, but may be higher for the hips [16]. The results obtained with our model during the pre-study show us that the root mean square (RMS) error for the hip movements is around 3°.

1.2.8. Statistical analysis

We used the Student test under Excel, with the additional analysis macros to highlight the significativity of the differences between the four experimental conditions. This is a one-sided test (superiority) with a threshold of significativity set to \(P = 5\% \).

1.3. Results

Table 2 gives the averages of the angular values of the different amplitudes in flexion, extension, abduction and adduction for the four patients. The measurements are given individually and then added two by two to obtain amplitude values in the sagittal and frontal planes. The measurements are reported without a socket and then for each type of socket. For each movement studied, the table also provides the percentage of amplitude loss compared to the reference amplitude measured without a socket.

Two strong tendencies are seen at this point. The first shows adduction is most restricted movement for the sockets tested, followed by extension. The second tendency indicates the ischial-ramal containment socket restricts the hip’s range of motion the least.

Table 2

<table>
<thead>
<tr>
<th>Averages</th>
<th>Flexion</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F ± SD</td>
<td>LF ± SD</td>
</tr>
</tbody>
</table>
The small size of our population didn’t permit us to conduct multiple comparisons. We chose to restrict our study to the use of one single evaluation criterion – the global amplitude of the hip joint [19] – defined as the sum of the angular values of each movement (i.e., flexion, extension, abduction and adduction). This parameter was calculated for four experimental conditions: without a socket, with a quadrilateral socket, with an ischial-ramal containment socket, and with an ischial-ramal containment socket. These results are provided in Table 3.

As shown in Fig. 3, the statistical tests suggest the following significant differences:

- a reduction of the global amplitude of the hip joint, whatever the type of socket, compared to physiological conditions without a socket;
- a global amplitude of the hip joint less restricted by the ischial-ramal containment socket than the other two sockets;
- no significant difference between the ischial containment socket and the quadrilateral socket.

If the global percentage of amplitude loss under each experimental condition is analyzed (Fig. 4), the ranking of sockets is identical: the ischial-ramal containment socket involves less restriction of the global range of motion compared to the ischial containment socket and the quadrilateral socket.

1.4. Discussion

This paper presents an evaluation method for the hip’s active range of motion in transfemoral amputees. This method uses a 3D motion capture system. The method’s precision is thus linked to the precision of the system. Stereo-photogrammetry is known to be sensitive to skin sliding in relation to marker placement and deformation of the soft tissues. These imponderable phenomena (i.e., skin sliding and deformation) are very important in transfemoral amputees.

In order to compensate for this critical aspect of the patient marker placement, we chose to use a liner, which permits us to limit the soft tissue deformation in the residual limb. We used this liner in all the experimental conditions, including the movements without a socket. We did not quantify the influence of wearing the liner on the patient movements. Thus, it is possible the results obtained with the liner but without the socket would be slightly different from the results for a patient performing the movements without a liner.

We tested the extreme joint amplitudes of the patients without the other prosthesis components. In this way, the results obtained are only determined by the socket type. In real life, the patients do not wear their socket independently of the other prosthesis components, but integrated in the whole prosthesis. If the same study was conducted with the whole prosthesis in place, it is highly likely that the results obtained would be different, notably because of the increased weight of the whole prosthesis. As a result, the joint amplitudes would certainly be reduced.

Our results show that the three socket types studies have a negative impact on the physiological functioning of the hip joint; however, the ischial-ramal containment socket restricts the movements the least significantly. This study has a population with only four participants, which did not allow us to statistically test several parameters, so there is a risk of a type 1 error, also known as a false positive.
Nonetheless, we identified some tendencies. One of them showed that adduction is the movement the most restricted by the sockets tested, followed by extension. Rotation movements were not investigated in the study, but it could be interesting to study them in the future in order to complete the data collected on the influence of the sockets.

As a parameter to analyze, this study does not take into account the length of the stump. Generally, only a little data is available on the influence of stump length in transfemoral amputees. For 11 patients using three different types of knees, Jaegers et al. [12] reported an increased length of the stance phase on the healthy leg for any decrease in the stump length. For 13 patients, Baum et al. [1] did not find any influence of the stump length on any of the studied parameters (i.e., gait speed, cadence, stride length on either the healthy side or the prosthetic side, stance phase length on both sides, hip flexion, lateral or anterior trunk inclination) for stumps that had lengths between 57% and 100% of the contralateral crural segment length. For 12 patients whose stumps had an average length of 70% of the contralateral crural segment, Haschisuka et al. [10] did not find any significant differences in the oxygen consumption while walking at a comfortable speed. Table 1 reports the stump lengths used in this study, which were between 60.8% and 85% of the contralateral crural segment length. Based on the available data, this parameter had little influence on our results.

We compared the various socket designs with the objective of determining their respective influences of the hip kinematics. Several authors have already this type of study [3,7–10], but no one has analyzed specifically the behavior of the hip joint. Frequently, these studies concern energy consumption or the feelings of the patients, and they compare only the quadrilateral socket to the ischial containment socket. Their results show a better patient satisfaction for patients who wear an ischial containment socket [7] and a reduction of oxygen consumption while walking rapidly (over 3 km/h) [3,7,8,10].

All these studies, most of them done in a laboratory setting and studying global phenomena, underline a real incertitude as to the interest of the patients to use one socket design rather than another in everyday life. In our study, we chose to focus on a simple task: the hip joint’s movement in interaction with a socket. In fact, the socket is the only component in direct contact with the patient’s body, and it conditions the functioning of the other prosthesis components when using the prosthesis. Any decrease in the range of motion at this level will have repercussions in the daily life of the patients [2].

In 1970, Johnston and Smidt [13] studied the hip joint of non-amputees in their daily lives. After hip surgery, it was necessary to recover a flexion of 120°, an abduction of 20° and an external rotation of 20° to allow normal functioning of the hip joint (e.g., putting on shoes, sitting down on/getting up from a chair, picking up an object). Extending the hip makes it possible to walk with a normal stride length [17].

Hagberg et al. [11] studied the hip’s range of motion in transfemoral amputees with and without a socket, as well as the subjective feeling of comfort in a sitting position. They compared 43 patients with prostheses equipped with quadrilateral or ischial containment sockets to 20 patients whose prostheses were fixed directly in the bone by osteointegration. With the prosthesis in place, the results show a reduction of the hip’s range of motion in all directions for the “socket” group compared to the “osteointegration” group; however, there were no significant differences between the two types of socket. The reduction was more noticeable in flexion (–15°). In the sagittal plane, the total loss of flexion-extension was 24°, while in our study, it was 22.6° for the ischial containment socket, 20.2° for the quadrilateral socket, and 12.6° for the ischial-ramal containment socket. Thus, our results for the first two sockets are confirmed by those of Hagberg et al. [11].

A study by Boonstra et al. [3] highlights the importance of preserving good hip mobility. They reported a significant correlation between the hip’s sagittal amplitude, flexion-extension, and walking speed. The less the joint is restricted, the more the walking speed increases. Similarly, in the study by Burger et al. [4], on passing from sitting position to a standing position, the amputees need a maximum range of motion in flexion; otherwise, the action is longer and the compensations are more important.

In the end, all these studies show the advantages of making sockets that preserve the best possible hip mobility. In the sagittal plane, if there is more residual hip flexion, the sitting position is more comfortable, the patient can get up more easily, and the walking speed is higher. Similarly, it is necessary to minimize the direct contact of the ischium and socket in order to promote the posterior stride. In our study, the ischial-ramal containment socket responds better to this objective in the experimental conditions described, probably because of its very specific cuts and volumes. However, it is important to relativize the universality of this socket’s indication because it requires leaning on the ischio-pubic zones, which can influence the tolerability using this type of socket. Our results are the first that show the advantages of using the ischial-ramal containment socket compared to the more traditional sockets.

Nonetheless, this study was performed in a laboratory setting, with a limited number of patients and with maximal range of motion. In future research, it will be important to study the advantages of this socket in the different daily living activities. We can deduce that it is not while walking that the benefit of this socket is the most important, since the necessary joint amplitudes are relatively limited. It would be while doing activities when the hip is more solicited that the socket would prove its worth: sitting position, passing from a sitting position to a standing position, going up/down stairs, and the ante-flexion movements in order to, for example, pick up an object. Other studies could be done with the objective of better targeting the indication of these sockets, which are and will remain difficult to produce.

1.5. Conclusion

Our research has shown the negative influence that all these sockets have on the correct functioning of the hip joint in transfemoral amputees. This loss of joint mobility probably
decreases the patient’s quality of life. However, recent research on new concepts of cutting and form, especially the socket developed by Marlo Ortiz, called the ischial-ramal containment socket, allow us to hope for an improvement of this situation.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

2. Version française

2.1. Introduction

Marlo Ortiz [6] modifie le concept de l’emboîture à ischion intégré et propose l’emboîture anatomique à branche ischiopubienne incluse (BIPI) dite aussi emboîture MAS© pour Marlo Anatomical Socket (Fig. 1). Ici, ce n’est plus l’ischion qui est enveloppé par l’emboîture mais la branche ischiopubiennne. La palette de contention de la branche ischiopubiennne monte de 2 à 3 cm au-dessus de la branche ischiopubiennne. Sa largeur est de 5 à 6 cm. Le bord médial est en dessous de la branche ischiopubiennne. La ligne de découpe antérieure se trouve au niveau de la branche puis remonte pour être à 0,6 cm sous l’épine iliaque antéro-supérieure, elle suit le pli inguinal pour se raccorder à la paroi latérale. Celle-ci englobe le trochanter. Au niveau postérieur, le point médian de la forme en

Fig. 1. Découpes spécifiques de l’emboîture à branche ischiopubiennne incluse.
« U » se trouve à 1,2 cm sous la branche ischiopubienne pour les hommes et à 2,5 cm pour les femmes. Latéralement, la forme en « U » rejoint la paroi externe.

La hanche est le vecteur de transmission des forces du patient à sa prothèse et la mesure des amplitudes articulaires est un bon moyen de quantifier l’incapacité [2]. C’est pourquoi nous avons choisi d’étudier spécifiquement les amplitudes articulaires de la hanche afin de déterminer quelle emboîture est la moins limitative. Pour identifier l’influence d’un composant de la prothèse, on peut modifier un de ces éléments sans modifier les autres [7], ou bien on peut étudier un des éléments indépendamment des autres [14]. Nous proposons dans ce travail d’étudier isolément l’influence de différents types d’emboîture sur les amplitudes articulaires actives de la hanche de l’amputé transfémoral.

2.2. Patients et méthodes

Nous avons utilisé une technologie de capture de mouvement 3D pour comparer les effets d’emboîtures différentes sur les amplitudes de la hanche d’amputés transfémoraux.

2.2.1. Population étudiée

L’échantillon est composé de quatre patients, tous des hommes, âgés de 51 ans en moyenne, présentant une amputation transfémorale unilatérale d’origine traumatique (trois cas) et vasculaire (un cas), amputés depuis au moins cinq ans. Ils étaient appareillés et portaient leur prothèse quotidiennement (au moins huit heures par jour). Trois patients avaient une emboîture BIPi et le dernier avait une emboîture à ischion intégré. Ces quatre patients ont donné leur accord pour participer à l’étude. Ce projet a fait l’objet d’une validation auprès du Comité de protection des personnes Bordeaux A. Les caractéristiques des patients sont regroupées dans le Tableau 1.

2.2.2. Protocole de fabrication des emboîtures

Chaque patient a bénéficié de la fabrication des trois types d’emboîture étudiés : quadrangulaires, à ischion intégré, BIPi. Le thermoformage des emboîtures a été réalisé avec un plastique de type Orthochoc®. Les mêmes taux de serrage ont été utilisés ainsi que le même type de manchon Stepline® à accrochage distal. Toutes les rectifications ont été effectuées par le même orthoprothésiste expérimenté et formé aux différentes techniques.

2.2.3. Équipement

Les tests sont enregistrés par un système Elite® (BTS, Italie) à 12 caméras fonctionnant à 200 Hz.

2.2.4. Modélisation

Nous avons utilisé un modèle à deux segments de solides rigides articulés, membre résiduel et bassin, pour mesurer la cinématique des mouvements de hanche. Trois marqueurs sont

<table>
<thead>
<tr>
<th>Tableau 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données anthropométriques des patients.</td>
</tr>
<tr>
<td>Sujets</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
liés à la cuisse, deux marqueurs sont placés sur les épines iliaques antéropériorières gauche et droite, deux marqueurs sont placés sur les trochanters, un marqueur est placé entre les deux fossettes sacrées, deux marqueurs sont placés sur l’accrochage distal du manchon (Fig. 2).

2.2.5. Protocole de mesure

Les quatre conditions de test sont les suivantes : sans emboîture, avec emboîture quadrangulaire, avec emboîture à ischion intégré et avec emboîture BIPI. Afin de neutraliser l’influence des autres éléments de la prothèse, genou et pied, tous les tests sont réalisés uniquement avec l’emboîture. Des mouvements actifs de flexion-extension et des mouvements actifs d’abduction-adduction sont réalisés dans les quatre conditions. Le patient a pour consigne d’effectuer les mouvements les plus amples possibles, il se tient à un support fixe, de type guidon de vélo, placé devant lui.

La position au repos du membre résiduel dans les différentes conditions du test est susceptible de fluctuer et ne peut donc pas être utilisée comme origine. C’est pourquoi nous avons préféré nous référer à l’axe vertical.

Les amplitudes actives de l’articulation sont calculées sur la base des mouvements qui sont répétés pendant 30 secondes et renouvelés trois fois avec un temps de repos entre chaque essai. Les quatre conditions sont testées dans un ordre randomisé.

2.2.6. Critère principal de jugement

Le critère de jugement principal est l’amplitude globale de la hanche. Ce paramètre se calcule en sommant les amplitudes articulaires de la hanche dans les différents plans. Sochart et Porter [19] ont utilisé ce paramètre qui a pour avantage de refléter la mobilité de la hanche avec une seule valeur.

2.2.7. Précision des mesures

Les tests de l’articulation sont réalisés dans les conditions de test suivantes : sans emboîture, avec emboîture quadrangulaire, avec emboîture à ischion intégré et avec emboîture BIPI. Le patient a pour consigne d’effectuer les mouvements les plus amples possibles, il se tient à un support fixe, de type guidon de vélo, placé devant lui. Les quatre conditions de test sont testées dans un ordre randomisé.

2.2.6. Critère principal de jugement

Le critère de jugement principal est l’amplitude globale de la hanche. Ce paramètre se calcule en sommant les amplitudes articulaires de la hanche dans les différents plans. Sochart et Porter [19] ont utilisé ce paramètre qui a pour avantage de refléter la mobilité de la hanche avec une seule valeur.

2.2.7. Précision des mesures

Tableau 3
Amplitude globale de l’articulation de la hanche et perte de l’amplitude globale, flexion-extension et perte de flexion-extension, abduction-adduction et perte d’abduction-adduction.

<table>
<thead>
<tr>
<th>Moyennes</th>
<th>Amplitude sagittale</th>
<th>Amplitude frontale</th>
<th>Amplitude Globale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FE ± ET (°)</td>
<td>PFE (%)</td>
<td>AG ± ET (°)</td>
</tr>
<tr>
<td>Sans emboîture</td>
<td>97,4 ± 15,5</td>
<td>–</td>
<td>69,6 ± 3,6</td>
</tr>
<tr>
<td>BIPI</td>
<td>85,1 ± 15,7</td>
<td>12,6</td>
<td>54,4 ± 5,2</td>
</tr>
<tr>
<td>Ischion intégré</td>
<td>74,8 ± 13,9</td>
<td>23,2</td>
<td>50,6 ± 6,0</td>
</tr>
<tr>
<td>Quadrangulaire</td>
<td>77,2 ± 14,2</td>
<td>20,7</td>
<td>50,1 ± 5,2</td>
</tr>
</tbody>
</table>

2.2.8. Analyse statistique
Nous avons utilisé le test de Student sous Excel avec les macros complémentaires d’analyse pour mettre en évidence la significativité des différences entre les quatre conditions expérimentales. Il s’agit de tests unilatéraux (de supériorité) avec un seuil de significativité fixé à p = 5 %.

2.3. Résultats
Le Tableau 2 donne les moyennes des valeurs angulaires des différentes amplitudes en flexion, extension, abduction et adduction des quatre patients. Les mesures sont données individuellement puis additionnées deux à deux pour obtenir une valeur de l’amplitude dans le plan sagittal et dans le plan frontal. Les mesures sont données sans emboîture puis pour chaque type d’emboîture. Pour chaque mouvement étudié, le tableau indique également le pourcentage de perte d’amplitude par rapport à l’amplitude de référence mesurée sans emboîture.

Deux tendances fortes se dégagent à ce stade. La première montre que l’adduction est le mouvement le plus limité par les emboîtures testées, suivie de l’extension. La seconde tendance indique que l’emboîture à branche ischiopubienne incluse limite moins les amplitudes articulaires de la hanche.

La petite taille de notre échantillon ne nous permettait pas d’effectuer des comparaisons multiples. Nous avons choisi de nous restreindre à l’utilisation d’un seul critère de jugement, l’amplitude globale de l’articulation [19], définie comme étant la somme des valeurs angulaires de chaque mouvement (flexion, extension, abduction et adduction). Ce paramètre est calculé pour les quatre situations : sans emboîture, avec l’emboîture quadrangulaire, avec l’emboîture à ischion intégré et avec l’emboîture à branche ischiopubienne incluse.

Ces résultats sont regroupés dans le Tableau 3.
Les tests statistiques (Fig. 3) indiquent les différences significatives suivantes : une diminution de l’amplitude globale de l’articulation de la hanche quel que soit le type d’emboîture par rapport à la situation physiologique sans emboîture, une amplitude globale de l’articulation de la hanche moins limitée avec l’emboîture BIPI par rapport aux deux autres emboîtures, en revanche, pas de différence significative entre l’emboîture à ischion intégré et l’emboîture quadrangulaire.

Si on analyse maintenant le pourcentage de perte d’amplitude globale dans chaque situation (Fig. 4), le classement des emboîtures est identique : l’emboîture BIPI entraîne moins de limitation de l’amplitude globale de l’articulation comparée à l’emboîture quadrangulaire ou à ischion intégré.

2.4. Discussion
Ce travail présente une méthode d’évaluation des amplitudes articulaires actives de la hanche chez les patients amputés transfémoraux. Cette méthode utilise la capture de mouvements 3D. La précision de la méthode est donc liée à celle de ces techniques. On sait que la stéréophotogrammétrie est sensible aux glissements de peau par rapport aux repères osseux et aux déformations des masses molles. Ces phénomènes impondérables sont très importants pour les amputés transfémoraux. Pour

![Fig. 3. Amplitude globale (AG), dans les quatre conditions, sans emboîture, avec emboîture ischion intégré, avec emboîture quadrangulaire et avec emboîture BIPI. NS : non significatif.](image)

![Fig. 4. Découpe spécifiques de l’emboîture à branche ischiopubienne incluse (BIPI). Pourcentage de perte d’amplitude globale par rapport aux mouvements sans emboîture.](image)
compenser cet aspect critique des techniques à marqueurs placés sur le patient, nous avons choisi d’utiliser un manchon qui permet de limiter les déformations des masses molles du membre résiduel. Nous avons employé ce manchon dans toutes les conditions, y compris lors des mouvements sans emboîture. Nous n’avons pas quantifié l’impact du port d’un manchon sur les mouvements effectués par les patients. Il est donc possible que les résultats obtenus avec manchon mais sans emboîture soient légèrement différents de ceux réalisables par les patients sans manchons.

Nous avons testé les amplitudes extrêmes des patients sans les autres éléments prothétiques. De cette manière, les résultats que nous avons obtenus ne sont conditionnés que par le type d’emboîture. En situation de vie réelle, les patients ne portent pas leur emboîture isolément, mais intégrée à un appareil complet. Si une même étude était accomplie, prothèse complète en place, il est fort probable que les résultats seraient différents, du fait notamment de l’augmentation du poids de l’appareil, et on observerait sûrement une diminution des amplitudes.

Les résultats montrent que les trois types d’emboîture étudiés ont un impact négatif sur le fonctionnement physiologique de l’articulation de la hanche mais que l’emboîture BIPI est celle qui limite significativement le moins les mouvements. Ce travail ne porte que sur quatre sujets ce qui ne permettait pas de tester statistiquement de nombreux paramètres (risque d’erreur de type 1 de faux positifs). Cependant, nous avons déterminé des tendances. L’une d’entre elles montre que c’est l’adduction qui est le mouvement le plus limité par les emboîtures testées, suivie de l’extension. Les mouvements de rotation ne sont pas étudiés dans cette étude mais il pourrait être intéressant de le faire à l’avenir afin de compléter les données recueillies concernant l’impact des emboîtures.

Ce travail ne prend pas en compte la longueur du moignon comme un paramètre à analyser. Peu de données sont disponibles d’une manière générale sur l’influence de la longueur du moignon chez le sujet amputé transfémoral. Jaegers et al. [12] rapportent pour 11 patients utilisant trois types différents de genou, une augmentation de la durée de la phase d’appui sur la jambe saine avec la diminution de la longueur du moignon. Baum et al. [1], sur 13 patients, ne retrouvent aucune influence de la longueur du moignon sur aucun des paramètres de leur étude (vitesse de marche, cadence, longueur du pas, côté sain ou côté appareillé, durée de la phase d’appui des deux côtés, flexion de hanche, inclinaison latérale ou antérieure du tronc) pour des moignons dont la longueur était comprise entre 57 et 100 % de la longueur du segment crural controlatéral. Haschisuka et al. [10], pour 12 patients dont les moignons ont une longueur moyenne de 70 % du segment crural controlatéral, ne retrouvent pas de différence significative de la consommation d’oxygène à la marche à vitesse confortable. La longueur des moignons dans ce travail était comprise entre 60,8 % et 85 % de la longueur du segment crural controlatéral (Tableau 1). On peut donc admettre, en nous basant sur les données disponibles, que ce paramètre n’a eu que peu d’influence sur nos résultats.

Nous avons comparé des designs différents d’emboîture dans l’objectif de connaître leurs influences respectives sur la cinématique de la hanche. Plusieurs auteurs avaient déjà fait ce type de travail [3,7–10] mais aucun en analysant spécifiquement le comportement de l’articulation de la hanche. Le plus souvent, ces travaux portent sur la consommation énergétique ou le ressenti des patients et ils comparent uniquement l’emboîture quadrangulaire à l’emboîture à ischion intégré. Les résultats montrent une meilleure satisfaction des patients envers leurs emboîtures pour ceux qui portent les modèles à ischion intégré [7] ainsi qu’une diminution de la consommation d’oxygène à marche rapide (supérieure à 3 km/h) [3,7,8,10].

Il ressort de tous ces travaux, pour la plupart effectués en laboratoire et étudiant des phénomènes globaux, une réelle incertitude quant à l’intérêt pour les patients en situation de vie quotidienne de bénéficier de telle conception d’emboîture plutôt que de telle autre. Dans ce travail, nous avons choisi de nous focaliser sur une tâche simple : le mouvement de l’articulation de la hanche en interaction avec une emboîture. En effet, l’emboîture est le seul élément en contact direct avec le corps et elle conditionne le fonctionnement des autres composants de la prothèse lors de son utilisation. Toute diminution d’amplitude à ce niveau aura une répercussion dans la vie quotidienne des patients [2].

Johnston et Smidt [13], en 1970, étudient chez le patient non amputé, l’articulation de la hanche dans la vie quotidienne. Il faudrait, après une chirurgie de la hanche, une récupération de la flexion à 120°, de l’abduction à 20°, de la rotation externe à 20° pour permettre une récupération fonctionnelle normale (mettre ses chaussures, s’asseoir et se lever d’une chaise, ramasser un objet). L’extension de la hanche permet de marcher avec une longueur de pas normale [17]. Hagberg et al. [11] étudient l’amplitude de la hanche avec et sans emboîture chez l’amputé transfémoral ainsi que le ressenti subjectif du confort en position assise. Il compare 43 patients appareillés avec des emboîtures quadrangulaires ou à ischion intégré à 20 patients dont la prothèse est fixée par ostéointégration. Les résultats montrent, appareillage en place, une diminution des amplitudes de la hanche dans toutes les directions dans le groupe « emboîture » par rapport au groupe « ostéointégration » mais il n’y a pas de différence significative entre les deux types d’emboîture. La diminution est plus marquée sur la flexion (−15°). La perte totale dans le plan sagittal, flexion-extension est de 24°, alors que dans notre étude, elle est de 22,6° pour l’emboîture à ischion intégré, 20,2° pour la quadrangulaire et 12,6° pour la BIPI. Nos résultats sur les deux premières emboîtures rejoignent donc ceux de Hagberg et al. [11].

En définitive, tous ces travaux montrent l’intérêt de réaliser des emboîtures conservant la meilleure mobilité de hanche possible. Dans le plan sagittal, plus il y a de flexion résiduelle de hanche, plus la position assise est confortable, plus la vitesse de marche est élevée et plus le patient peut se lever facilement. De même, il faut minimiser les contacts directs entre l’ischion et l’emboîture pour favoriser le pas postérieur. Dans notre travail, l’emboîture BIPI, probablement du fait de ses découpes et volume très spécifiques, répond le mieux à cet objectif dans les conditions expérimentales décrétées. Il convient de relativiser l’universalité de son indication car cette emboîture nécessite des appuis dans les zones ischiopubiennes qui peuvent influencer la tolérance à l’utilisation. Nos résultats sont les premiers qui montrent l’intérêt de l’emboîture BIPI par rapport aux formes plus anciennes. Néanmoins, la démonstration n’a été faite qu’en laboratoire, sur un nombre restreint de patients et sur des amplitudes maximales. Dans le futur, il conviendrait d’étudier l’intérêt de cette emboîture en situation écologique pour différentes activités. On peut supposer que ce n’est pas lors de la marche que le bénéfice que procure cette emboîture est le plus important, les amplitudes nécessaires étant assez limitées. Il s’agirait plutôt d’activités pendant lesquelles la hanche est sollicitée de façon plus importante : position assise, passage de la position assise à la position debout, montée et descente d’escaliers et mouvements d’ante-flexion pour ramasser un objet.

D’autres travaux pourraient avoir pour objectif de mieux cerner les indications de ces emboîtures qui sont et resteront difficiles à réaliser.

2.5. Conclusion

Notre travail montre l’influence négative qu’ont toutes les emboîtures sur le bon fonctionnement de l’articulation de la hanche chez le patient amputé transfémoral. Cette perte de mobilité articulaire diminue probablement la qualité de vie. Néanmoins, les recherches récentes sur de nouveaux concepts de découpe et forme, notamment l’emboîture mise au point par Marlo Ortiz dite à branche ischiopubiennne incluse, permettent d’espérer, comme nous avons commencé à le démontrer, une amélioration de cette situation.

Déclaration d’intérêts

Les auteurs déclarent ne pas avoir de conflits d’intérêts en relation avec cet article.

References