For this reason, we re-assayed the patient’s blood sample using a new capillary electrophoresis method (CAPILLARYS 2 Flex Piercing) for HbA1c. As shown in Fig. 1, despite being unable to measure HbA1c using this method (as was the case with VARIANT II), the peak corresponding to the haemoglobin variant was detectable on electrophoresis and, above all, differed from that corresponding to HbA1c.

In conclusion, we present here a case of haemoglobin Hope migrating at the level of the HbA1c peak when using a classical ion-exchange HPLC method, leading to an erroneous HbA1c value. In contrast, capillary electrophoresis was able to distinguish HbA1c from haemoglobin Hope. To the best of our knowledge, this is the first report of capillary electrophoresis measurement of HbA1c in a patient displaying haemoglobin Hope in the heterozygous state. While capillary electrophoresis was able to detect the unusual haemoglobin Hope variant, it did not permit assessment of HbA1c. However, other methods have been reported to be unaffected by the presence of haemoglobin Hope and could be used as alternatives in this context [4,5]. Finally, this case serves as a reminder that biologists and physicians need to be aware of the limitations of available techniques that measure HbA1c, especially in the presence of haemoglobin variants.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

Acknowledgments

We thank SEBIA for giving us the opportunity to use the CAPILLARYS 2 Flex Piercing HbA1c analyzer.

References


S. Fellahi a,b,c
M. Henderson d
J. Capeau a,b,c
J.-P. Bastard a∗,b,c

a AP–HP, hôpital Tenon, service de biochimie et hormonologie, 4, rue de la Chine, 75970 Paris cedex 20, France
b Inserm, CDR U938, 75012 Paris, France
c UPMC-Paris 6, UMR S938, 75012 Paris, France
d Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Quebec, H3A 1A2, Canada

* Corresponding author. Tel.: +33 (1) 56 01 66 76; fax: +33 (1) 56 01 60 17.
E-mail address: jean-philippe.bastard@tnn.aphp.fr (J.-P. Bastard)

Received 2 February 2012
Accepted 2 February 2012
doi:10.1016/j.diabet.2012.02.007

Severe hypertriglyceridaemia in patients treated with lipid-modifying agents

Hypertriglycéridémie sévère chez des patients sous traitement hypolipémiant

Keywords: Hypertriglyceridaemia; Cardiovascular disease; Antilipaemic agents; Europe
Mots clés : Hypertriglycéridémie ; Maladies cardiovasculaires ; Hypolipémiant ; Europe

1. Background

Few studies have been conducted among patients with severe hypertriglyceridaemia (shTG), and real-life management of this lipid disorder is not well established and remains poorly documented [1].

2. Objective

The demographic and medical characteristics of patients with treated but uncontrolled shTG, supervised by general practitioners from five European countries, were identified, and the therapies prescribed for their lipid disorders were analyzed.

3. Methods and findings

Data were extracted from the Cegedim Strategic Data Longitudinal Patient Databases (LPDs) from Belgium, France, Germany and Italy, and from The Health Improvement Network (THIN) database in the United Kingdom. LPD and THIN databases are electronic medical records. Currently, 2.9 million patients are registered with practices in THIN, 1.6 million in LPD France, 0.8 million in LPD Italy, 0.7 million in LPD Germany and 0.3 million in LPD Belgium. The study population comprised 303,290 patients, aged 18 years and over, with at
least one prescription for lipid-modifying therapy such as statins, fibrates, nicotinic acid, ezetimibe and fixed combinations, and at least one triglyceride (TG) measurement, in 2007. The most recent prescriptions for lipid-modifying therapy and most recent TG measurements were extracted for the analyses. Patients with shTG were defined as follows: TG greater than 15 mmol/L [2] and TG/total cholesterol ratio (g/L) greater than 2.5. Patients with total cholesterol less than 5 mmol/L (n = 12) were excluded for suspicion of unreliable entry of plasma lipid concentrations. Diabetes was identified from a prescription for an antidiabetic drug or from a specific diagnosis of diabetes; SAS 9.1 software (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses. Descriptive data were presented as percentages or as means with standard deviations (SD). For comparisons between patients with shTG and all others, Wilcoxon’s rank-sum or chi-square tests were performed. Results were considered significant if two-sided P values were less than 0.05.

Of the 303,290 registered patients treated with lipid-modifying therapy, 231 (0.076%) had shTG. Table 1 summarizes the study population with and without shTG. ShTG was more prevalent in younger patients, in males, and in diabetic and obese patients, and also appeared to be associated with a lower proportion of patients with a history of coronary heart disease (CHD), although the difference disappeared after stratification for age (Table 1).

Although fibrates were used much more frequently in patients with shTG than in other patients treated for lipid disorders (23% vs 5%, respectively; P < 0.0001), statins and/or ezetimibe were the treatments most frequently used in shTG patients (69.3%).

Among patients with shTG, therapy was similar across the five countries (data not shown, P = 0.3).

4. Discussion

Our present data suggest that shTG disorders occur mostly in young adults. Also, beyond the known association of diabetes and obesity, shTG does not appear to be related to prior coronary events in patients treated with lipid-modifying therapy. The difference between the two groups could be due to either survival bias or unexplained improvement of shTG with ageing. Unexpectedly, the majority of patients with shTG (58%) were statin-treated. Moreover, fixed combinations of statins and ezetimibe accounted for 11% of all therapies prescribed to these patients. However, such a choice is not adequate, as fibrates are more effective in reducing TG concentrations (by 30% to >50%). Statin plus fibrate combinations were used in only 6% of cases, whereas the recent Action to Control Cardiovascular Risk in Diabetes (ACCORD) study has shown a trend towards benefit with the association of fenofibrate and simvastatin only in the subgroup of patients with hypertriglyceridaemia and low-high-density lipoprotein (HDL) cholesterol [3].

Considered altogether, our present data confirm the rarity of shTG, and reveal a discrepancy between current European practices and the usual recommendations, a finding applicable to all countries [4,5].

Disclosure of interest

P.M. received honoraria for serving on advisory boards from Astra Zeneca, GSK and MSD; research grants from Sanofi-Aventis and Servier; and travel reimbursements for attending academic meetings from Astra Zeneca, MSD, Pfizer, Novartis and Solvay.

Acknowledgements

This work was funded in part by Cegedim Strategic Data, which had no role in the design, data analysis or interpretation of the results. We thank the members of the Pharmacoepidemiology Unit at CHU Lyon: Laurent Laforest, MD, PhD and Cécile Ritleng, MSc.

References


G. Désaméricq
E. Van Ganse
Unité de pharmaco-épidémiologie, faculté d’odontologie
UCBL, CHU de Lyon, 69372 Lyon, France

M.-S. Schwalm
Cegedim Strategic Data, 92100 Boulogne-Billancourt, France
A. Bourke
The Health Improvement Network, SW8 3QJ London, UK
P. Moulin*
Université de Lyon, 69003 Lyon, France

* Corresponding author. Fédération d’endocrinologie, diabétologie, maladies métaboliques, nutrition, hôpital cardiovasculaire Louis-Pradel, groupement hospitalier Est, avenue Doyen-Lépine, 69677 Bron cedex, France.
Tel.: +33 4 72 68 13 04; fax: +33 4 72 68 13 07.
E-mail address: philippe.moulin@chu-lyon.fr (P. Moulin)

Received 15 February 2012
Accepted 15 February 2012
doi:10.1016/j.diabet.2012.02.009