CO27-003-e
Brain stimulation and visuo-spatial improvement for neglect patients: Description of two cases
Institut régional de médecine physique et de réadaptation, rue du Pr-Montaut, 54690 Lay Saint Christophe, France
*Corresponding author.
E-mail address: matthieu.kandel@sante-lorraine.fr.

Keywords: Spatial neglect; Stroke; Cerebral stimulation; TDCS
Neglect syndrome is frequently associated with right hemisphere stroke. The concept of interhemispheric competition is being put forward increasingly to explain this syndrome [1]. Therefore, any intervention aiming at restoring balance between the two hemispheres could be useful. Non-invasive brain stimulations (transcranial Direct Current Stimulation [TDCS] and repetitive Transcranial Magnetic Stimulation [rTMS]) have already shown their ability to modify cortical excitability [2]. Their use to restore interhemispheric balance after a stroke would therefore appear interesting. Few studies have evaluated these techniques as a potential treatment for neglect patients: most of them have used rTMS [3,4].

In a pilot study, we aimed at replicating with TDCS the results that were obtained with rTMS. Two patients had two stimulation sessions of the left parietal lobe (inhibition with cathodic stimulation, or sham stimulation). Evaluation of visuo-spatial performances (line bisection and the bell test) was performed before, during and immediately after the stimulation. For one patient, rightward bisection bias was significantly reduced during real stimulation (0.8% bias versus 18.5% pre-test) but not sham stimulation (22.4% versus 17.3%). Visual exploration improved (+30% target found, 4.1% during sham stimulation). For the second patient, bisection bias was stable in both conditions. Visual exploration was better after real stimulation (+26% targets versus –3.2% during sham stimulation). These first results confirm that inhibitory stimulation of the left hemisphere parietal lobe can improve visuo-spatial performances for left neglect patients.

More results are necessary to statistically confirm these findings.

References

http://dx.doi.org/10.1016/j.rehab.2012.07.498

CO27-004-e
Spatial cognition and virtual reality: Review and interest for rehabilitation
B. Glize a, G. Rode a, E. Klinger a,b, P.A. Joseph a
a EA 4136, service de MPR, pôle de neurosciences clinique, université Bordeaux-Segalen, CHU de Bordeaux, CHU Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France
b Service de médecine physique et réadaptation, hôpital Henry-Gabrielle, hospices civils de Lyon, 69230 Saint-Génis-Laval, France

Keywords: Spatial cognition; Virtual reality; Spatial neglect; Rehabilitation
Disorders of spatial cognition are often associated with neglect syndrome and most often are induced by right hemisphere injury. Unilateral neglect is a neurological deficit of perception, attention, representation, performing actions within their left-sided space, inducing many functional debilitating effects altering everyday life, and responsible for poor functional recovery and ability to benefit from treatment. Several techniques have been proposed in the last decades, but only a few have shown long-lasting effects and none have provided complete rehabilitation. Virtual reality (VR) is a possible way to overcome time, economic and physical constraints limiting clinicians’ opportunities to observe patients’ performance at complex daily tasks. Moreover, VR technology offers the potential to assist current rehabilitation techniques in addressing the impairments, disabilities, and handicaps associated with brain damage.

In the domain of spatial cognition, VR is a relatively new tool that has just begun to be adopted to assess and rehabilitate spatial cognition disorders, especially unilateral neglect. This technology enables not only to study but also affect perception, attention, and moving in an explored space as well as learning and mental representation of the learnt environment. This emerging treatment appears to be promising for rehabilitation medicine.

Here, we review the main studies using VR to explore the mechanisms of spatial cognition and mental imagery. This review also describes studies that have used VR in the assessment and rehabilitation of spatial ability impairments, especially unilateral neglect. Finally, we will try to the main issues of VR and spatial cognition in clinical practice and research in physical and rehabilitation medicine.

Further reading

http://dx.doi.org/10.1016/j.rehab.2012.07.499

CO27-005-e
Bottom-up effect of prism adaptation on hemineglct in virtual spatial domain
B. Glize a, S. Jacquin-Courtois a, M. Lunven d, E. Cotton a, S. Chapeau a, E. Klinger a, P.A. Joseph a, G. Rode a

a EA 4136, service de MPR, pôle de neurosciences clinique, université Bordeaux-Segalen, CHU de Bordeaux, CHU Pellegrin, place Amélie-Raba-Léon, 33076 Bordeaux, France
b Service de médecine physique et réadaptation, hôpital Henry-Gabrielle, hospices civils de Lyon, 69230 Saint-Génis-Laval, France
c Équipe Impact,-6, Inserm U1028, CNRS UMR 5292, centre de recherche en neurosciences de Lyon, université Claude-Bernard Lyon I, Lyon, France
d Institut UPMC, Hôpital de la Salpêtrière, Paris, France

Keywords: Unilateral spatial neglect; Prism adaptation; Virtual reality; Rehabilitation
Unilateral neglect is a disabling syndrome due to right hemisphere brain damage. Prism adaptation (PA) has been used to improve several aspects of unilateral neglect. Parameters ranging from the classical neuropsychological tests to mental imagery or to others sensory modalities have been successfully ameliorated following a brief period of adaptation to wedge prisms shifting the visual field to the right. The aim of the study was to assess whether the beneficial ‘bottom-up’ effects of PA may generalize to a virtual spatial domain.

Seven right brain-damaged patients with a left chronic neglect were included. After-effect of PA was assessed by measure of straight-ahead pointing movements in darkness. Cognitive effects were assessed by neuropsychological tests and by a virtual reality task: the patient had to explore a virtual supermarket
Immediate effects of mirror therapy on spatial neglect

A. Moustapha a, b, M. Rousseaux a, b

a Service de rééducation fonctionnelle, clinique Saint-Roch, 56, rue de Lille, 59223 Roncq, France
b Service de rééducation neurologique, hôpital Swynghedauw, CHU de Lille, Lille, France

Keywords: Mirror therapy; Spatial neglect; Stroke

Objectives.— A few studies have suggested an effect of mirror therapy on hemiparesis after stroke (CVA) [1]. Recent work has also suggested a long-term effect on spatial neglect [2]. Our objective was to evaluate the immediate effect of a single session of mirror therapy on manifestations of spatial neglect.

Patients and methods.— We included eight subjects (30-75 years) with spatial neglect (according to Negligence Evaluation Battery) secondary to a unilateral lesion. We randomized 40 subjects to mirror therapy. The left visual field exploration to the left hemifield with behavior of deviation to the right. Due to the ipsilateral parietal lesion, exploration to the left hemifield was impaired by the introduction of a global striking effects by color (1.8 seconds).

Methods.— The patient included in this study was a hemineglect patient with right parietal lesion. An earplug system was used for auditory stimuli (1000 Hz pure tones). Adjustable coil-mounted goggles displayed the visual stimuli (filled white circles on a black background). In congruent trials, stimuli were presented simultaneously on the same side (left or right); they were were presented on opposite sides in incongruent trials. Participants had to respond with their right hand by pressing a response-pad button corresponding to the auditory or visual target side according to the instruction.

Results.— For the left target the patient needed more time than the control group to respond, regardless of the modality or the congruency. Nevertheless, the conflict cost was similar to the control group. For the right target, the patient presented an extensive conflict effect for auditory target and a paradoxical (reversed) conflict effect for visual target. fMRI data showed that, for the auditory target, incongruent compared to congruent trials elicited activations over a bilateral fronto-parietal network in the control group. A comparable result was obtained for the patient except for the right inferior parietal activation (BA40). Instead, we observed a right superior parietal activation (BA7). No activation was found for incongruent trials compared to congruent for the visual target whatever the group.

Discussion.— Unlike clinical visuo-motor tests, our spatial visuo-auditory conflict task revealed a left visual and auditory attentional deficit in the patient. fMRI activations suggest that he may have partially recovered from his hemineglect due to cortical plasticity after his stroke; this matched with the occurrence of a right conflict cost for auditory but not visual target.

Study of pop-out effect in neglect patients

C. Terracol a, b, C. Montaut b, E. Castel-Lacanal b, X. De Boissezon b, C. Jouffrais c, P. Marque b

a Service de MPR, CHU Rangueil, 1, avenue Jean-Poulhès, 31059 Toulouse, France
b Service de MPR, CHU Rangueil, France

References


Keywords: Hemineglect; Computer test; Cancellation test; Salience; Parietal lesion

Background.— Hemineglect is a syndrome characterized by disturbances of space exploration to the left hemifield with behavior of deviation to the right. Due to the diversity of its manifestations and brain lesion responsible for symptoms, pathophysiology, diagnostic and therapeutic still remain problematic. We have implemented on a computer interface the bells cancellation test (Gauthier 1989).

Objective.— Establish the effects of striking targets (global or predominantly on the left) with color and/or movement on visual exploration according to each hemifield. Three groups of patients with brain damage are evaluated: 24 patients with hemineglenice, 12 patients recovered completely from it and 12 patients who never presented hemineglect.

Results.— Computerization of the test could be considered valid as there was a significant difference between the three groups for the number of targets hits, the first column of the target and the execution speed (P < 0.001 for all three). Our study has highlighted that the execution speed of hemineglect patients is improved by the introduction of a global striking effects by color (1.8 seconds