CO27-003-e
Brain stimulation and visuo-spatial improvement for neglect patients: Description of two cases
Institut régional de médecine physique et de réadaptation, rue du Pr-Montant, 54690 Lay Saint Christophe, France
*Corresponding author.
E-mail address: matthieu.kandel@sante-lorraine.fr.

Keywords: Spatial neglect; Stroke; Cerebral stimulation; TDCS
Neglect syndrome is frequently associated with right hemisphere stroke. The concept of interhemispheric competition is being put forward increasingly to explain this syndrome [1]. Therefore, any intervention aiming at restoring balance between the two hemispheres could be useful. Non-invasive brain stimulations (transcranial Direct Current Stimulation [tDCS] and repetitive Transcranial Magnetic Stimulation [rTMS]) have already shown their ability to modify cortical excitability [2]. Their use to restore interhemispheric balance after a stroke would therefore appear interesting. Few studies have evaluated these techniques as a potential treatment for neglect patients: most of them have used rTMS [3,4].

In a pilot study, we aimed at replicating with tDCS the results that were obtained with rTMS. Two patients had two stimulation sessions of the left parietal lobe (inhibition with cathodic stimulation, or sham stimulation). Evaluation of visuo-spatial performances (line bisection and the bell test) was performed before, during and immediately after the stimulation.

For one patient, rightward bisection bias was significantly reduced during real stimulation (0.8% bias versus 18.5% pre-test) but not sham stimulation (22.4% versus 17.3%). Visual exploration improved (+30% target found, 4.1% during sham stimulation). For the second patient, bisection bias was stable in both conditions. Visual exploration was better after real stimulation (+26% targets versus –3.2% during sham stimulation).

These first results confirm that inhibitory stimulation of the left hemisphere parietal lobe can improve visuo-spatial performances for left neglect patients.

More results are necessary to statistically confirm these findings.

References

CO27-003-e
Brain stimulation and visuo-spatial improvement for neglect patients: Description of two cases

CO27-005-e
Bottom-up effect of prism adaptation on hemineglect in virtual spatial domain
*EA 4136, service de MPR, pôle de neurosciences clinique, université Bordeaux-Segalen, CHU de Bordeaux, CHU Pellegrin, place Amélie-Raba-León, 33076 Bordeaux, France
°Service de médecine physique et réadaptation, hôpital Henry-Gabrielle, hospices civils de Lyon, 69230 Saint-Gens-Laval, France
°Unité d’Ergothérapie, INSERM U975, hôpital de la Salpêtrière, Paris, France
°Service de neurologie, hôpital du Val de Grâce, INSERM U877, Paris, France
°Laboratoire d’anatomie, UFR Laennec, université de Lyon, université Lyon 1, rue Guillame-Paradin, 69312 Lyon cedex 08, France
°Service de radiologie, université de Lyon, université Lyon 1, centre hospitalier Lyon-Sud, hospices civils de Lyon, 69495 Lyon, France
°Arts et métiers Paristech LAMPA-ÉA 1427, Angers-Laval, France
°EA 4136, service de MPR, pôle de neurosciences clinique, université Bordeaux-Segalen, CHU de Bordeaux, Bordeaux, France
*Corresponding author.
E-mail address: bertrand.gize@chu-bordeaux.fr.

Keywords: Unilateral spatial neglect; Prism adaptation; Virtual reality; Rehabilitation
Unilateral neglect is a disabling syndrome due to right hemisphere brain damage. Prism adaptation (PA) has been used to improve several aspects of unilateral neglect. Parameters ranging from the classical neuropsychological tests to mental imagery or to others sensory modalities have been successfully ameliorated following a brief period of adaptation to wedge prisms shifting the visual field to the right. The aim of the study was to assess whether the beneficial ‘bottom-up’ effects of PA may generalize to a virtual spatial domain. Seven right brain-damaged patients with a left chronic neglect were included. After-effect of PA was assessed by measure of straight-ahead pointing movements in darkness. Cognitive effects were assessed by neuropsychological tests and by a virtual reality task: the patient had to explore a virtual supermarket

CO27-005-e
Bottom-up effect of prism adaptation on hemineglect in virtual spatial domain